blender/intern/cycles/render/light.cpp
Brecht Van Lommel 58a290234b Cycles: ray visibility options now work for lamps and mesh lights, with and without
multiple importance sampling, so you can disable them for diffuse/glossy/transmission.

The Light Path node here is still weak and does not give this info. To make that
work we'd need to evaluate the shader multiple times which is slow and we can't
detect well enough when it is actually needed.
2013-06-07 18:59:23 +00:00

653 lines
19 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "device.h"
#include "integrator.h"
#include "film.h"
#include "light.h"
#include "mesh.h"
#include "object.h"
#include "scene.h"
#include "shader.h"
#include "util_foreach.h"
#include "util_progress.h"
CCL_NAMESPACE_BEGIN
static void dump_background_pixels(Device *device, DeviceScene *dscene, int res, vector<float3>& pixels)
{
/* create input */
int width = res;
int height = res;
device_vector<uint4> d_input;
device_vector<float4> d_output;
uint4 *d_input_data = d_input.resize(width*height);
for(int y = 0; y < height; y++) {
for(int x = 0; x < width; x++) {
float u = x/(float)width;
float v = y/(float)height;
uint4 in = make_uint4(__float_as_int(u), __float_as_int(v), 0, 0);
d_input_data[x + y*width] = in;
}
}
/* compute on device */
float4 *d_output_data = d_output.resize(width*height);
memset((void*)d_output.data_pointer, 0, d_output.memory_size());
device->const_copy_to("__data", &dscene->data, sizeof(dscene->data));
device->mem_alloc(d_input, MEM_READ_ONLY);
device->mem_copy_to(d_input);
device->mem_alloc(d_output, MEM_WRITE_ONLY);
DeviceTask main_task(DeviceTask::SHADER);
main_task.shader_input = d_input.device_pointer;
main_task.shader_output = d_output.device_pointer;
main_task.shader_eval_type = SHADER_EVAL_BACKGROUND;
main_task.shader_x = 0;
main_task.shader_w = width*height;
/* disabled splitting for now, there's an issue with multi-GPU mem_copy_from */
list<DeviceTask> split_tasks;
main_task.split_max_size(split_tasks, 128*128);
foreach(DeviceTask& task, split_tasks) {
device->task_add(task);
device->task_wait();
device->mem_copy_from(d_output, task.shader_x, 1, task.shader_w, sizeof(float4));
}
device->mem_free(d_input);
device->mem_free(d_output);
d_output_data = reinterpret_cast<float4*>(d_output.data_pointer);
pixels.resize(width*height);
for(int y = 0; y < height; y++) {
for(int x = 0; x < width; x++) {
pixels[y*width + x].x = d_output_data[y*width + x].x;
pixels[y*width + x].y = d_output_data[y*width + x].y;
pixels[y*width + x].z = d_output_data[y*width + x].z;
}
}
}
/* Light */
Light::Light()
{
type = LIGHT_POINT;
co = make_float3(0.0f, 0.0f, 0.0f);
dir = make_float3(0.0f, 0.0f, 0.0f);
size = 0.0f;
axisu = make_float3(0.0f, 0.0f, 0.0f);
sizeu = 1.0f;
axisv = make_float3(0.0f, 0.0f, 0.0f);
sizev = 1.0f;
map_resolution = 512;
spot_angle = M_PI_4_F;
spot_smooth = 0.0f;
cast_shadow = true;
use_mis = false;
use_diffuse = true;
use_glossy = true;
use_transmission = true;
shader = 0;
samples = 1;
}
void Light::tag_update(Scene *scene)
{
scene->light_manager->need_update = true;
}
/* Light Manager */
LightManager::LightManager()
{
need_update = true;
}
LightManager::~LightManager()
{
}
void LightManager::device_update_distribution(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
progress.set_status("Updating Lights", "Computing distribution");
/* count */
size_t num_lights = scene->lights.size();
size_t num_background_lights = 0;
size_t num_triangles = 0;
size_t num_curve_segments = 0;
foreach(Object *object, scene->objects) {
Mesh *mesh = object->mesh;
bool have_emission = false;
/* skip if we are not visible for BSDFs */
if(!(object->visibility & (PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY|PATH_RAY_TRANSMIT)))
continue;
/* skip if we have no emission shaders */
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
if(shader->sample_as_light && shader->has_surface_emission) {
have_emission = true;
break;
}
}
/* count triangles */
if(have_emission) {
for(size_t i = 0; i < mesh->triangles.size(); i++) {
Shader *shader = scene->shaders[mesh->shader[i]];
if(shader->sample_as_light && shader->has_surface_emission)
num_triangles++;
}
/* disabled for curves */
#if 0
foreach(Mesh::Curve& curve, mesh->curves) {
Shader *shader = scene->shaders[curve.shader];
if(shader->sample_as_light && shader->has_surface_emission)
num_curve_segments += curve.num_segments();
#endif
}
}
size_t num_distribution = num_triangles + num_curve_segments;
num_distribution += num_lights;
/* emission area */
float4 *distribution = dscene->light_distribution.resize(num_distribution + 1);
float totarea = 0.0f;
/* triangles */
size_t offset = 0;
int j = 0;
foreach(Object *object, scene->objects) {
Mesh *mesh = object->mesh;
bool have_emission = false;
/* skip if we are not visible for BSDFs */
if(!(object->visibility & (PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY|PATH_RAY_TRANSMIT))) {
j++;
continue;
}
/* skip if we have no emission shaders */
foreach(uint sindex, mesh->used_shaders) {
Shader *shader = scene->shaders[sindex];
if(shader->sample_as_light && shader->has_surface_emission) {
have_emission = true;
break;
}
}
/* sum area */
if(have_emission) {
bool transform_applied = mesh->transform_applied;
Transform tfm = object->tfm;
int object_id = j;
int shader_id = SHADER_MASK;
if(transform_applied)
object_id = ~object_id;
if(!(object->visibility & PATH_RAY_DIFFUSE)) {
shader_id |= SHADER_EXCLUDE_DIFFUSE;
scene->film->use_light_visibility = true;
}
if(!(object->visibility & PATH_RAY_GLOSSY)) {
shader_id |= SHADER_EXCLUDE_GLOSSY;
scene->film->use_light_visibility = true;
}
if(!(object->visibility & PATH_RAY_TRANSMIT)) {
shader_id |= SHADER_EXCLUDE_TRANSMIT;
scene->film->use_light_visibility = true;
}
for(size_t i = 0; i < mesh->triangles.size(); i++) {
Shader *shader = scene->shaders[mesh->shader[i]];
if(shader->sample_as_light && shader->has_surface_emission) {
distribution[offset].x = totarea;
distribution[offset].y = __int_as_float(i + mesh->tri_offset);
distribution[offset].z = __int_as_float(shader_id);
distribution[offset].w = __int_as_float(object_id);
offset++;
Mesh::Triangle t = mesh->triangles[i];
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
if(!transform_applied) {
p1 = transform_point(&tfm, p1);
p2 = transform_point(&tfm, p2);
p3 = transform_point(&tfm, p3);
}
totarea += triangle_area(p1, p2, p3);
}
}
/* sample as light disabled for strands */
#if 0
size_t i = 0;
foreach(Mesh::Curve& curve, mesh->curves) {
Shader *shader = scene->shaders[curve.shader];
int first_key = curve.first_key;
if(shader->sample_as_light && shader->has_surface_emission) {
for(int j = 0; j < curve.num_segments(); j++) {
distribution[offset].x = totarea;
distribution[offset].y = __int_as_float(i + mesh->curve_offset); // XXX fix kernel code
distribution[offset].z = __int_as_float(j) & SHADER_MASK;
distribution[offset].w = __int_as_float(object_id);
offset++;
float3 p1 = mesh->curve_keys[first_key + j].loc;
float r1 = mesh->curve_keys[first_key + j].radius;
float3 p2 = mesh->curve_keys[first_key + j + 1].loc;
float r2 = mesh->curve_keys[first_key + j + 1].radius;
if(!transform_applied) {
p1 = transform_point(&tfm, p1);
p2 = transform_point(&tfm, p2);
}
totarea += M_PI_F * (r1 + r2) * len(p1 - p2);
}
}
i++;
}
#endif
}
if(progress.get_cancel()) return;
j++;
}
float trianglearea = totarea;
/* point lights */
float lightarea = (totarea > 0.0f)? totarea/scene->lights.size(): 1.0f;
bool use_lamp_mis = false;
for(int i = 0; i < scene->lights.size(); i++, offset++) {
Light *light = scene->lights[i];
distribution[offset].x = totarea;
distribution[offset].y = __int_as_float(~(int)i);
distribution[offset].z = 1.0f;
distribution[offset].w = light->size;
totarea += lightarea;
if(light->size > 0.0f && light->use_mis)
use_lamp_mis = true;
if(light->type == LIGHT_BACKGROUND)
num_background_lights++;
}
/* normalize cumulative distribution functions */
distribution[num_distribution].x = totarea;
distribution[num_distribution].y = 0.0f;
distribution[num_distribution].z = 0.0f;
distribution[num_distribution].w = 0.0f;
if(totarea > 0.0f) {
for(size_t i = 0; i < num_distribution; i++)
distribution[i].x /= totarea;
distribution[num_distribution].x = 1.0f;
}
if(progress.get_cancel()) return;
/* update device */
KernelIntegrator *kintegrator = &dscene->data.integrator;
KernelFilm *kfilm = &dscene->data.film;
kintegrator->use_direct_light = (totarea > 0.0f);
if(kintegrator->use_direct_light) {
/* number of emissives */
kintegrator->num_distribution = num_distribution;
/* precompute pdfs */
kintegrator->pdf_triangles = 0.0f;
kintegrator->pdf_lights = 0.0f;
kintegrator->inv_pdf_lights = 0.0f;
/* sample one, with 0.5 probability of light or triangle */
kintegrator->num_all_lights = num_lights;
if(trianglearea > 0.0f) {
kintegrator->pdf_triangles = 1.0f/trianglearea;
if(num_lights)
kintegrator->pdf_triangles *= 0.5f;
}
if(num_lights) {
kintegrator->pdf_lights = 1.0f/num_lights;
if(trianglearea > 0.0f)
kintegrator->pdf_lights *= 0.5f;
kintegrator->inv_pdf_lights = 1.0f/kintegrator->pdf_lights;
}
kintegrator->use_lamp_mis = use_lamp_mis;
/* bit of an ugly hack to compensate for emitting triangles influencing
* amount of samples we get for this pass */
kfilm->pass_shadow_scale = 1.0f;
if(kintegrator->pdf_triangles != 0.0f)
kfilm->pass_shadow_scale *= 0.5f;
if(num_background_lights < num_lights)
kfilm->pass_shadow_scale *= (float)(num_lights - num_background_lights)/(float)num_lights;
/* CDF */
device->tex_alloc("__light_distribution", dscene->light_distribution);
}
else {
dscene->light_distribution.clear();
kintegrator->num_distribution = 0;
kintegrator->num_all_lights = 0;
kintegrator->pdf_triangles = 0.0f;
kintegrator->pdf_lights = 0.0f;
kintegrator->inv_pdf_lights = 0.0f;
kintegrator->use_lamp_mis = false;
kfilm->pass_shadow_scale = 1.0f;
}
}
void LightManager::device_update_background(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
KernelIntegrator *kintegrator = &dscene->data.integrator;
Light *background_light = NULL;
/* find background light */
foreach(Light *light, scene->lights) {
if(light->type == LIGHT_BACKGROUND) {
background_light = light;
break;
}
}
/* no background light found, signal renderer to skip sampling */
if(!background_light) {
kintegrator->pdf_background_res = 0;
return;
}
progress.set_status("Updating Lights", "Importance map");
assert(kintegrator->use_direct_light);
/* get the resolution from the light's size (we stuff it in there) */
int res = background_light->map_resolution;
kintegrator->pdf_background_res = res;
assert(res > 0);
vector<float3> pixels;
dump_background_pixels(device, dscene, res, pixels);
if(progress.get_cancel())
return;
/* build row distributions and column distribution for the infinite area environment light */
int cdf_count = res + 1;
float2 *marg_cdf = dscene->light_background_marginal_cdf.resize(cdf_count);
float2 *cond_cdf = dscene->light_background_conditional_cdf.resize(cdf_count * cdf_count);
/* conditional CDFs (rows, U direction) */
for(int i = 0; i < res; i++) {
float sin_theta = sinf(M_PI_F * (i + 0.5f) / res);
float3 env_color = pixels[i * res];
float ave_luminamce = average(env_color);
cond_cdf[i * cdf_count].x = ave_luminamce * sin_theta;
cond_cdf[i * cdf_count].y = 0.0f;
for(int j = 1; j < res; j++) {
env_color = pixels[i * res + j];
ave_luminamce = average(env_color);
cond_cdf[i * cdf_count + j].x = ave_luminamce * sin_theta;
cond_cdf[i * cdf_count + j].y = cond_cdf[i * cdf_count + j - 1].y + cond_cdf[i * cdf_count + j - 1].x / res;
}
float cdf_total = cond_cdf[i * cdf_count + res - 1].y + cond_cdf[i * cdf_count + res - 1].x / res;
/* stuff the total into the brightness value for the last entry, because
* we are going to normalize the CDFs to 0.0 to 1.0 afterwards */
cond_cdf[i * cdf_count + res].x = cdf_total;
if(cdf_total > 0.0f)
for(int j = 1; j < res; j++)
cond_cdf[i * cdf_count + j].y /= cdf_total;
cond_cdf[i * cdf_count + res].y = 1.0f;
}
/* marginal CDFs (column, V direction, sum of rows) */
marg_cdf[0].x = cond_cdf[res].x;
marg_cdf[0].y = 0.0f;
for(int i = 1; i < res; i++) {
marg_cdf[i].x = cond_cdf[i * cdf_count + res].x;
marg_cdf[i].y = marg_cdf[i - 1].y + marg_cdf[i - 1].x / res;
}
float cdf_total = marg_cdf[res - 1].y + marg_cdf[res - 1].x / res;
marg_cdf[res].x = cdf_total;
if(cdf_total > 0.0f)
for(int i = 1; i < res; i++)
marg_cdf[i].y /= cdf_total;
marg_cdf[res].y = 1.0f;
/* update device */
device->tex_alloc("__light_background_marginal_cdf", dscene->light_background_marginal_cdf);
device->tex_alloc("__light_background_conditional_cdf", dscene->light_background_conditional_cdf);
}
void LightManager::device_update_points(Device *device, DeviceScene *dscene, Scene *scene)
{
if(scene->lights.size() == 0)
return;
float4 *light_data = dscene->light_data.resize(scene->lights.size()*LIGHT_SIZE);
if(!device->info.advanced_shading) {
/* remove unsupported light */
foreach(Light *light, scene->lights) {
if(light->type == LIGHT_BACKGROUND) {
scene->lights.erase(std::remove(scene->lights.begin(), scene->lights.end(), light), scene->lights.end());
break;
}
}
}
scene->film->use_light_visibility = false;
for(size_t i = 0; i < scene->lights.size(); i++) {
Light *light = scene->lights[i];
float3 co = light->co;
float3 dir = normalize(light->dir);
int shader_id = scene->shader_manager->get_shader_id(scene->lights[i]->shader);
float samples = __int_as_float(light->samples);
if(!light->cast_shadow)
shader_id &= ~SHADER_CAST_SHADOW;
if(!light->use_diffuse) {
shader_id |= SHADER_EXCLUDE_DIFFUSE;
scene->film->use_light_visibility = true;
}
if(!light->use_glossy) {
shader_id |= SHADER_EXCLUDE_GLOSSY;
scene->film->use_light_visibility = true;
}
if(!light->use_transmission) {
shader_id |= SHADER_EXCLUDE_TRANSMIT;
scene->film->use_light_visibility = true;
}
if(light->type == LIGHT_POINT) {
shader_id &= ~SHADER_AREA_LIGHT;
float radius = light->size;
float invarea = (radius > 0.0f)? 1.0f/(M_PI_F*radius*radius): 1.0f;
if(light->use_mis && radius > 0.0f)
shader_id |= SHADER_USE_MIS;
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z);
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), radius, invarea, 0.0f);
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
light_data[i*LIGHT_SIZE + 3] = make_float4(samples, 0.0f, 0.0f, 0.0f);
}
else if(light->type == LIGHT_DISTANT) {
shader_id &= ~SHADER_AREA_LIGHT;
float radius = light->size;
float angle = atanf(radius);
float cosangle = cosf(angle);
float area = M_PI_F*radius*radius;
float invarea = (area > 0.0f)? 1.0f/area: 1.0f;
if(light->use_mis && area > 0.0f)
shader_id |= SHADER_USE_MIS;
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), dir.x, dir.y, dir.z);
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), radius, cosangle, invarea);
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
light_data[i*LIGHT_SIZE + 3] = make_float4(samples, 0.0f, 0.0f, 0.0f);
}
else if(light->type == LIGHT_BACKGROUND) {
shader_id &= ~SHADER_AREA_LIGHT;
shader_id |= SHADER_USE_MIS;
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), 0.0f, 0.0f, 0.0f);
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), 0.0f, 0.0f, 0.0f);
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
light_data[i*LIGHT_SIZE + 3] = make_float4(samples, 0.0f, 0.0f, 0.0f);
}
else if(light->type == LIGHT_AREA) {
float3 axisu = light->axisu*(light->sizeu*light->size);
float3 axisv = light->axisv*(light->sizev*light->size);
float area = len(axisu)*len(axisv);
float invarea = (area > 0.0f)? 1.0f/area: 1.0f;
if(light->use_mis && area > 0.0f)
shader_id |= SHADER_USE_MIS;
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z);
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), axisu.x, axisu.y, axisu.z);
light_data[i*LIGHT_SIZE + 2] = make_float4(invarea, axisv.x, axisv.y, axisv.z);
light_data[i*LIGHT_SIZE + 3] = make_float4(samples, dir.x, dir.y, dir.z);
}
else if(light->type == LIGHT_SPOT) {
shader_id &= ~SHADER_AREA_LIGHT;
float radius = light->size;
float invarea = (radius > 0.0f)? 1.0f/(M_PI_F*radius*radius): 1.0f;
float spot_angle = cosf(light->spot_angle*0.5f);
float spot_smooth = (1.0f - spot_angle)*light->spot_smooth;
if(light->use_mis && radius > 0.0f)
shader_id |= SHADER_USE_MIS;
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z);
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), radius, invarea, spot_angle);
light_data[i*LIGHT_SIZE + 2] = make_float4(spot_smooth, dir.x, dir.y, dir.z);
light_data[i*LIGHT_SIZE + 3] = make_float4(samples, 0.0f, 0.0f, 0.0f);
}
}
device->tex_alloc("__light_data", dscene->light_data);
}
void LightManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
device_free(device, dscene);
device_update_points(device, dscene, scene);
if(progress.get_cancel()) return;
device_update_distribution(device, dscene, scene, progress);
if(progress.get_cancel()) return;
device_update_background(device, dscene, scene, progress);
if(progress.get_cancel()) return;
need_update = false;
}
void LightManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->light_distribution);
device->tex_free(dscene->light_data);
device->tex_free(dscene->light_background_marginal_cdf);
device->tex_free(dscene->light_background_conditional_cdf);
dscene->light_distribution.clear();
dscene->light_data.clear();
dscene->light_background_marginal_cdf.clear();
dscene->light_background_conditional_cdf.clear();
}
void LightManager::tag_update(Scene *scene)
{
need_update = true;
}
CCL_NAMESPACE_END