blender/intern/cycles/util/util_math.h
Lukas Stockner fa3d50af95 Cycles: Improve denoising speed on GPUs with small tile sizes
Previously, the NLM kernels would be launched once per offset with one thread per pixel.
However, with the smaller tile sizes that are now feasible, there wasn't enough work to fully occupy GPUs which results in a significant slowdown.

Therefore, the kernels are now launched in a single call that handles all offsets at once.
This has two downsides: Memory accesses to accumulating buffers are now atomic, and more importantly, the temporary memory now has to be allocated for every shift at once, increasing the required memory.
On the other hand, of course, the smaller tiles significantly reduce the size of the memory.

The main bottleneck right now is the construction of the transformation - there is nothing to be parallelized there, one thread per pixel is the maximum.
I tried to parallelize the SVD implementation by storing the matrix in shared memory and launching one block per pixel, but that wasn't really going anywhere.

To make the new code somewhat readable, the handling of rectangular regions was cleaned up a bit and commented, it should be easier to understand what's going on now.
Also, some variables have been renamed to make the difference between buffer width and stride more apparent, in addition to some general style cleanup.
2017-11-30 07:37:08 +01:00

579 lines
11 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __UTIL_MATH_H__
#define __UTIL_MATH_H__
/* Math
*
* Basic math functions on scalar and vector types. This header is used by
* both the kernel code when compiled as C++, and other C++ non-kernel code. */
#ifndef __KERNEL_GPU__
# include <cmath>
#endif
#ifndef __KERNEL_OPENCL__
# include <float.h>
# include <math.h>
# include <stdio.h>
#endif /* __KERNEL_OPENCL__ */
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Float Pi variations */
/* Division */
#ifndef M_PI_F
# define M_PI_F (3.1415926535897932f) /* pi */
#endif
#ifndef M_PI_2_F
# define M_PI_2_F (1.5707963267948966f) /* pi/2 */
#endif
#ifndef M_PI_4_F
# define M_PI_4_F (0.7853981633974830f) /* pi/4 */
#endif
#ifndef M_1_PI_F
# define M_1_PI_F (0.3183098861837067f) /* 1/pi */
#endif
#ifndef M_2_PI_F
# define M_2_PI_F (0.6366197723675813f) /* 2/pi */
#endif
/* Multiplication */
#ifndef M_2PI_F
# define M_2PI_F (6.2831853071795864f) /* 2*pi */
#endif
#ifndef M_4PI_F
# define M_4PI_F (12.566370614359172f) /* 4*pi */
#endif
/* Float sqrt variations */
#ifndef M_SQRT2_F
# define M_SQRT2_F (1.4142135623730950f) /* sqrt(2) */
#endif
#ifndef M_LN2_F
# define M_LN2_F (0.6931471805599453f) /* ln(2) */
#endif
#ifndef M_LN10_F
# define M_LN10_F (2.3025850929940457f) /* ln(10) */
#endif
/* Scalar */
#ifdef _WIN32
# ifndef __KERNEL_OPENCL__
ccl_device_inline float fmaxf(float a, float b)
{
return (a > b)? a: b;
}
ccl_device_inline float fminf(float a, float b)
{
return (a < b)? a: b;
}
# endif /* !__KERNEL_OPENCL__ */
#endif /* _WIN32 */
#ifndef __KERNEL_GPU__
using std::isfinite;
using std::isnan;
using std::sqrt;
ccl_device_inline int abs(int x)
{
return (x > 0)? x: -x;
}
ccl_device_inline int max(int a, int b)
{
return (a > b)? a: b;
}
ccl_device_inline int min(int a, int b)
{
return (a < b)? a: b;
}
ccl_device_inline float max(float a, float b)
{
return (a > b)? a: b;
}
ccl_device_inline float min(float a, float b)
{
return (a < b)? a: b;
}
ccl_device_inline double max(double a, double b)
{
return (a > b)? a: b;
}
ccl_device_inline double min(double a, double b)
{
return (a < b)? a: b;
}
/* These 2 guys are templated for usage with registers data.
*
* NOTE: Since this is CPU-only functions it is ok to use references here.
* But for other devices we'll need to be careful about this.
*/
template<typename T>
ccl_device_inline T min4(const T& a, const T& b, const T& c, const T& d)
{
return min(min(a,b),min(c,d));
}
template<typename T>
ccl_device_inline T max4(const T& a, const T& b, const T& c, const T& d)
{
return max(max(a,b),max(c,d));
}
#endif /* __KERNEL_GPU__ */
ccl_device_inline float min4(float a, float b, float c, float d)
{
return min(min(a, b), min(c, d));
}
ccl_device_inline float max4(float a, float b, float c, float d)
{
return max(max(a, b), max(c, d));
}
#ifndef __KERNEL_OPENCL__
/* Int/Float conversion */
ccl_device_inline int as_int(uint i)
{
union { uint ui; int i; } u;
u.ui = i;
return u.i;
}
ccl_device_inline uint as_uint(int i)
{
union { uint ui; int i; } u;
u.i = i;
return u.ui;
}
ccl_device_inline uint as_uint(float f)
{
union { uint i; float f; } u;
u.f = f;
return u.i;
}
ccl_device_inline int __float_as_int(float f)
{
union { int i; float f; } u;
u.f = f;
return u.i;
}
ccl_device_inline float __int_as_float(int i)
{
union { int i; float f; } u;
u.i = i;
return u.f;
}
ccl_device_inline uint __float_as_uint(float f)
{
union { uint i; float f; } u;
u.f = f;
return u.i;
}
ccl_device_inline float __uint_as_float(uint i)
{
union { uint i; float f; } u;
u.i = i;
return u.f;
}
#endif /* __KERNEL_OPENCL__ */
/* Versions of functions which are safe for fast math. */
ccl_device_inline bool isnan_safe(float f)
{
unsigned int x = __float_as_uint(f);
return (x << 1) > 0xff000000u;
}
ccl_device_inline bool isfinite_safe(float f)
{
/* By IEEE 754 rule, 2*Inf equals Inf */
unsigned int x = __float_as_uint(f);
return (f == f) && (x == 0 || x == (1u << 31) || (f != 2.0f*f)) && !((x << 1) > 0xff000000u);
}
ccl_device_inline float ensure_finite(float v)
{
return isfinite_safe(v)? v : 0.0f;
}
#ifndef __KERNEL_OPENCL__
ccl_device_inline int clamp(int a, int mn, int mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float clamp(float a, float mn, float mx)
{
return min(max(a, mn), mx);
}
ccl_device_inline float mix(float a, float b, float t)
{
return a + t*(b - a);
}
#endif /* __KERNEL_OPENCL__ */
#ifndef __KERNEL_CUDA__
ccl_device_inline float saturate(float a)
{
return clamp(a, 0.0f, 1.0f);
}
#endif /* __KERNEL_CUDA__ */
ccl_device_inline int float_to_int(float f)
{
return (int)f;
}
ccl_device_inline int floor_to_int(float f)
{
return float_to_int(floorf(f));
}
ccl_device_inline int ceil_to_int(float f)
{
return float_to_int(ceilf(f));
}
ccl_device_inline float signf(float f)
{
return (f < 0.0f)? -1.0f: 1.0f;
}
ccl_device_inline float nonzerof(float f, float eps)
{
if(fabsf(f) < eps)
return signf(f)*eps;
else
return f;
}
ccl_device_inline float smoothstepf(float f)
{
float ff = f*f;
return (3.0f*ff - 2.0f*ff*f);
}
ccl_device_inline int mod(int x, int m)
{
return (x % m + m) % m;
}
ccl_device_inline float3 float2_to_float3(const float2 a)
{
return make_float3(a.x, a.y, 0.0f);
}
ccl_device_inline float3 float4_to_float3(const float4 a)
{
return make_float3(a.x, a.y, a.z);
}
ccl_device_inline float4 float3_to_float4(const float3 a)
{
return make_float4(a.x, a.y, a.z, 1.0f);
}
CCL_NAMESPACE_END
#include "util/util_math_int2.h"
#include "util/util_math_int3.h"
#include "util/util_math_int4.h"
#include "util/util_math_float2.h"
#include "util/util_math_float3.h"
#include "util/util_math_float4.h"
#include "util/util_rect.h"
CCL_NAMESPACE_BEGIN
#ifndef __KERNEL_OPENCL__
/* Interpolation */
template<class A, class B> A lerp(const A& a, const A& b, const B& t)
{
return (A)(a * ((B)1 - t) + b * t);
}
#endif /* __KERNEL_OPENCL__ */
/* Triangle */
#ifndef __KERNEL_OPENCL__
ccl_device_inline float triangle_area(const float3& v1,
const float3& v2,
const float3& v3)
#else
ccl_device_inline float triangle_area(const float3 v1,
const float3 v2,
const float3 v3)
#endif
{
return len(cross(v3 - v2, v1 - v2))*0.5f;
}
/* Orthonormal vectors */
ccl_device_inline void make_orthonormals(const float3 N, float3 *a, float3 *b)
{
#if 0
if(fabsf(N.y) >= 0.999f) {
*a = make_float3(1, 0, 0);
*b = make_float3(0, 0, 1);
return;
}
if(fabsf(N.z) >= 0.999f) {
*a = make_float3(1, 0, 0);
*b = make_float3(0, 1, 0);
return;
}
#endif
if(N.x != N.y || N.x != N.z)
*a = make_float3(N.z-N.y, N.x-N.z, N.y-N.x); //(1,1,1)x N
else
*a = make_float3(N.z-N.y, N.x+N.z, -N.y-N.x); //(-1,1,1)x N
*a = normalize(*a);
*b = cross(N, *a);
}
/* Color division */
ccl_device_inline float3 safe_invert_color(float3 a)
{
float x, y, z;
x = (a.x != 0.0f)? 1.0f/a.x: 0.0f;
y = (a.y != 0.0f)? 1.0f/a.y: 0.0f;
z = (a.z != 0.0f)? 1.0f/a.z: 0.0f;
return make_float3(x, y, z);
}
ccl_device_inline float3 safe_divide_color(float3 a, float3 b)
{
float x, y, z;
x = (b.x != 0.0f)? a.x/b.x: 0.0f;
y = (b.y != 0.0f)? a.y/b.y: 0.0f;
z = (b.z != 0.0f)? a.z/b.z: 0.0f;
return make_float3(x, y, z);
}
ccl_device_inline float3 safe_divide_even_color(float3 a, float3 b)
{
float x, y, z;
x = (b.x != 0.0f)? a.x/b.x: 0.0f;
y = (b.y != 0.0f)? a.y/b.y: 0.0f;
z = (b.z != 0.0f)? a.z/b.z: 0.0f;
/* try to get gray even if b is zero */
if(b.x == 0.0f) {
if(b.y == 0.0f) {
x = z;
y = z;
}
else if(b.z == 0.0f) {
x = y;
z = y;
}
else
x = 0.5f*(y + z);
}
else if(b.y == 0.0f) {
if(b.z == 0.0f) {
y = x;
z = x;
}
else
y = 0.5f*(x + z);
}
else if(b.z == 0.0f) {
z = 0.5f*(x + y);
}
return make_float3(x, y, z);
}
/* Rotation of point around axis and angle */
ccl_device_inline float3 rotate_around_axis(float3 p, float3 axis, float angle)
{
float costheta = cosf(angle);
float sintheta = sinf(angle);
float3 r;
r.x = ((costheta + (1 - costheta) * axis.x * axis.x) * p.x) +
(((1 - costheta) * axis.x * axis.y - axis.z * sintheta) * p.y) +
(((1 - costheta) * axis.x * axis.z + axis.y * sintheta) * p.z);
r.y = (((1 - costheta) * axis.x * axis.y + axis.z * sintheta) * p.x) +
((costheta + (1 - costheta) * axis.y * axis.y) * p.y) +
(((1 - costheta) * axis.y * axis.z - axis.x * sintheta) * p.z);
r.z = (((1 - costheta) * axis.x * axis.z - axis.y * sintheta) * p.x) +
(((1 - costheta) * axis.y * axis.z + axis.x * sintheta) * p.y) +
((costheta + (1 - costheta) * axis.z * axis.z) * p.z);
return r;
}
/* NaN-safe math ops */
ccl_device_inline float safe_sqrtf(float f)
{
return sqrtf(max(f, 0.0f));
}
ccl_device float safe_asinf(float a)
{
return asinf(clamp(a, -1.0f, 1.0f));
}
ccl_device float safe_acosf(float a)
{
return acosf(clamp(a, -1.0f, 1.0f));
}
ccl_device float compatible_powf(float x, float y)
{
#ifdef __KERNEL_GPU__
if(y == 0.0f) /* x^0 -> 1, including 0^0 */
return 1.0f;
/* GPU pow doesn't accept negative x, do manual checks here */
if(x < 0.0f) {
if(fmodf(-y, 2.0f) == 0.0f)
return powf(-x, y);
else
return -powf(-x, y);
}
else if(x == 0.0f)
return 0.0f;
#endif
return powf(x, y);
}
ccl_device float safe_powf(float a, float b)
{
if(UNLIKELY(a < 0.0f && b != float_to_int(b)))
return 0.0f;
return compatible_powf(a, b);
}
ccl_device float safe_divide(float a, float b)
{
return (b != 0.0f)? a/b: 0.0f;
}
ccl_device float safe_logf(float a, float b)
{
if(UNLIKELY(a <= 0.0f || b <= 0.0f))
return 0.0f;
return safe_divide(logf(a),logf(b));
}
ccl_device float safe_modulo(float a, float b)
{
return (b != 0.0f)? fmodf(a, b): 0.0f;
}
ccl_device_inline float sqr(float a)
{
return a * a;
}
ccl_device_inline float beta(float x, float y)
{
#ifndef __KERNEL_OPENCL__
return expf(lgammaf(x) + lgammaf(y) - lgammaf(x+y));
#else
return expf(lgamma(x) + lgamma(y) - lgamma(x+y));
#endif
}
ccl_device_inline float xor_signmask(float x, int y)
{
return __int_as_float(__float_as_int(x) ^ y);
}
/* projections */
ccl_device_inline float2 map_to_tube(const float3 co)
{
float len, u, v;
len = sqrtf(co.x * co.x + co.y * co.y);
if(len > 0.0f) {
u = (1.0f - (atan2f(co.x / len, co.y / len) / M_PI_F)) * 0.5f;
v = (co.z + 1.0f) * 0.5f;
}
else {
u = v = 0.0f;
}
return make_float2(u, v);
}
ccl_device_inline float2 map_to_sphere(const float3 co)
{
float l = len(co);
float u, v;
if(l > 0.0f) {
if(UNLIKELY(co.x == 0.0f && co.y == 0.0f)) {
u = 0.0f; /* othwise domain error */
}
else {
u = (1.0f - atan2f(co.x, co.y) / M_PI_F) / 2.0f;
}
v = 1.0f - safe_acosf(co.z / l) / M_PI_F;
}
else {
u = v = 0.0f;
}
return make_float2(u, v);
}
CCL_NAMESPACE_END
#endif /* __UTIL_MATH_H__ */