blender/intern/cycles/kernel/kernel_light.h
Lukas Stockner eacdcb2dd8 Cycles: Add new Sky Texture method including direct sunlight
This commit adds a new model to the Sky Texture node, which is based on a
method by Nishita et al. and works by basically simulating volumetric
scattering in the atmosphere.

By making some approximations (such as only considering single scattering),
we get a fairly simple and fast simulation code that takes into account
Rayleigh and Mie scattering as well as Ozone absorption.

This code is used to precompute a 512x128 texture which is then looked up
during render time, and is fast enough to allow real-time tweaking in the
viewport.

Due to the nature of the simulation, it exposes several parameters that
allow for lots of flexibility in choosing the look and matching real-world
conditions (such as Air/Dust/Ozone density and altitude).

Additionally, the same volumetric approach can be used to compute absorption
of the direct sunlight, so the model also supports adding direct sunlight.
This makes it significantly easier to set up Sun+Sky illumination where
the direction, intensity and color of the sun actually matches the sky.

In order to support properly sampling the direct sun component, the commit
also adds logic for sampling a specific area to the kernel light sampling
code. This is combined with portal and background map sampling using MIS.

This sampling logic works for the common case of having one Sky texture
going into the Background shader, but if a custom input to the Vector
node is used or if there are multiple Sky textures, it falls back to using
only background map sampling (while automatically setting the resolution to
4096x2048 if auto resolution is used).

More infos and preview can be found here:
https://docs.google.com/document/d/1gQta0ygFWXTrl5Pmvl_nZRgUw0mWg0FJeRuNKS36m08/view

Underlying model, implementation and documentation by Marco (@nacioss).
Improvements, cleanup and sun sampling by @lukasstockner.

Differential Revision: https://developer.blender.org/D7896
2020-06-17 21:06:41 +02:00

671 lines
21 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_light_background.h"
CCL_NAMESPACE_BEGIN
/* Light Sample result */
typedef struct LightSample {
float3 P; /* position on light, or direction for distant light */
float3 Ng; /* normal on light */
float3 D; /* direction from shading point to light */
float t; /* distance to light (FLT_MAX for distant light) */
float u, v; /* parametric coordinate on primitive */
float pdf; /* light sampling probability density function */
float eval_fac; /* intensity multiplier */
int object; /* object id for triangle/curve lights */
int prim; /* primitive id for triangle/curve lights */
int shader; /* shader id */
int lamp; /* lamp id */
LightType type; /* type of light */
} LightSample;
/* Regular Light */
ccl_device_inline bool lamp_light_sample(
KernelGlobals *kg, int lamp, float randu, float randv, float3 P, LightSample *ls)
{
const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, lamp);
LightType type = (LightType)klight->type;
ls->type = type;
ls->shader = klight->shader_id;
ls->object = PRIM_NONE;
ls->prim = PRIM_NONE;
ls->lamp = lamp;
ls->u = randu;
ls->v = randv;
if (type == LIGHT_DISTANT) {
/* distant light */
float3 lightD = make_float3(klight->co[0], klight->co[1], klight->co[2]);
float3 D = lightD;
float radius = klight->distant.radius;
float invarea = klight->distant.invarea;
if (radius > 0.0f)
D = distant_light_sample(D, radius, randu, randv);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
float costheta = dot(lightD, D);
ls->pdf = invarea / (costheta * costheta * costheta);
ls->eval_fac = ls->pdf;
}
#ifdef __BACKGROUND_MIS__
else if (type == LIGHT_BACKGROUND) {
/* infinite area light (e.g. light dome or env light) */
float3 D = -background_light_sample(kg, P, randu, randv, &ls->pdf);
ls->P = D;
ls->Ng = D;
ls->D = -D;
ls->t = FLT_MAX;
ls->eval_fac = 1.0f;
}
#endif
else {
ls->P = make_float3(klight->co[0], klight->co[1], klight->co[2]);
if (type == LIGHT_POINT || type == LIGHT_SPOT) {
float radius = klight->spot.radius;
if (radius > 0.0f)
/* sphere light */
ls->P += sphere_light_sample(P, ls->P, radius, randu, randv);
ls->D = normalize_len(ls->P - P, &ls->t);
ls->Ng = -ls->D;
float invarea = klight->spot.invarea;
ls->eval_fac = (0.25f * M_1_PI_F) * invarea;
ls->pdf = invarea;
if (type == LIGHT_SPOT) {
/* spot light attenuation */
float3 dir = make_float3(klight->spot.dir[0], klight->spot.dir[1], klight->spot.dir[2]);
ls->eval_fac *= spot_light_attenuation(
dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls->Ng);
if (ls->eval_fac == 0.0f) {
return false;
}
}
float2 uv = map_to_sphere(ls->Ng);
ls->u = uv.x;
ls->v = uv.y;
ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
}
else {
/* area light */
float3 axisu = make_float3(
klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
float3 axisv = make_float3(
klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
float3 D = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]);
float invarea = fabsf(klight->area.invarea);
bool is_round = (klight->area.invarea < 0.0f);
if (dot(ls->P - P, D) > 0.0f) {
return false;
}
float3 inplane;
if (is_round) {
inplane = ellipse_sample(axisu * 0.5f, axisv * 0.5f, randu, randv);
ls->P += inplane;
ls->pdf = invarea;
}
else {
inplane = ls->P;
ls->pdf = rect_light_sample(P, &ls->P, axisu, axisv, randu, randv, true);
inplane = ls->P - inplane;
}
ls->u = dot(inplane, axisu) * (1.0f / dot(axisu, axisu)) + 0.5f;
ls->v = dot(inplane, axisv) * (1.0f / dot(axisv, axisv)) + 0.5f;
ls->Ng = D;
ls->D = normalize_len(ls->P - P, &ls->t);
ls->eval_fac = 0.25f * invarea;
if (is_round) {
ls->pdf *= lamp_light_pdf(kg, D, -ls->D, ls->t);
}
}
}
ls->pdf *= kernel_data.integrator.pdf_lights;
return (ls->pdf > 0.0f);
}
ccl_device bool lamp_light_eval(
KernelGlobals *kg, int lamp, float3 P, float3 D, float t, LightSample *ls)
{
const ccl_global KernelLight *klight = &kernel_tex_fetch(__lights, lamp);
LightType type = (LightType)klight->type;
ls->type = type;
ls->shader = klight->shader_id;
ls->object = PRIM_NONE;
ls->prim = PRIM_NONE;
ls->lamp = lamp;
/* todo: missing texture coordinates */
ls->u = 0.0f;
ls->v = 0.0f;
if (!(ls->shader & SHADER_USE_MIS))
return false;
if (type == LIGHT_DISTANT) {
/* distant light */
float radius = klight->distant.radius;
if (radius == 0.0f)
return false;
if (t != FLT_MAX)
return false;
/* a distant light is infinitely far away, but equivalent to a disk
* shaped light exactly 1 unit away from the current shading point.
*
* radius t^2/cos(theta)
* <----------> t = sqrt(1^2 + tan(theta)^2)
* tan(th) area = radius*radius*pi
* <----->
* \ | (1 + tan(theta)^2)/cos(theta)
* \ | (1 + tan(acos(cos(theta)))^2)/cos(theta)
* t \th| 1 simplifies to
* \-| 1/(cos(theta)^3)
* \| magic!
* P
*/
float3 lightD = make_float3(klight->co[0], klight->co[1], klight->co[2]);
float costheta = dot(-lightD, D);
float cosangle = klight->distant.cosangle;
if (costheta < cosangle)
return false;
ls->P = -D;
ls->Ng = -D;
ls->D = D;
ls->t = FLT_MAX;
/* compute pdf */
float invarea = klight->distant.invarea;
ls->pdf = invarea / (costheta * costheta * costheta);
ls->eval_fac = ls->pdf;
}
else if (type == LIGHT_POINT || type == LIGHT_SPOT) {
float3 lightP = make_float3(klight->co[0], klight->co[1], klight->co[2]);
float radius = klight->spot.radius;
/* sphere light */
if (radius == 0.0f)
return false;
if (!ray_aligned_disk_intersect(P, D, t, lightP, radius, &ls->P, &ls->t)) {
return false;
}
ls->Ng = -D;
ls->D = D;
float invarea = klight->spot.invarea;
ls->eval_fac = (0.25f * M_1_PI_F) * invarea;
ls->pdf = invarea;
if (type == LIGHT_SPOT) {
/* spot light attenuation */
float3 dir = make_float3(klight->spot.dir[0], klight->spot.dir[1], klight->spot.dir[2]);
ls->eval_fac *= spot_light_attenuation(
dir, klight->spot.spot_angle, klight->spot.spot_smooth, ls->Ng);
if (ls->eval_fac == 0.0f)
return false;
}
float2 uv = map_to_sphere(ls->Ng);
ls->u = uv.x;
ls->v = uv.y;
/* compute pdf */
if (ls->t != FLT_MAX)
ls->pdf *= lamp_light_pdf(kg, ls->Ng, -ls->D, ls->t);
}
else if (type == LIGHT_AREA) {
/* area light */
float invarea = fabsf(klight->area.invarea);
bool is_round = (klight->area.invarea < 0.0f);
if (invarea == 0.0f)
return false;
float3 axisu = make_float3(
klight->area.axisu[0], klight->area.axisu[1], klight->area.axisu[2]);
float3 axisv = make_float3(
klight->area.axisv[0], klight->area.axisv[1], klight->area.axisv[2]);
float3 Ng = make_float3(klight->area.dir[0], klight->area.dir[1], klight->area.dir[2]);
/* one sided */
if (dot(D, Ng) >= 0.0f)
return false;
float3 light_P = make_float3(klight->co[0], klight->co[1], klight->co[2]);
if (!ray_quad_intersect(
P, D, 0.0f, t, light_P, axisu, axisv, Ng, &ls->P, &ls->t, &ls->u, &ls->v, is_round)) {
return false;
}
ls->D = D;
ls->Ng = Ng;
if (is_round) {
ls->pdf = invarea * lamp_light_pdf(kg, Ng, -D, ls->t);
}
else {
ls->pdf = rect_light_sample(P, &light_P, axisu, axisv, 0, 0, false);
}
ls->eval_fac = 0.25f * invarea;
}
else {
return false;
}
ls->pdf *= kernel_data.integrator.pdf_lights;
return true;
}
/* Triangle Light */
/* returns true if the triangle is has motion blur or an instancing transform applied */
ccl_device_inline bool triangle_world_space_vertices(
KernelGlobals *kg, int object, int prim, float time, float3 V[3])
{
bool has_motion = false;
const int object_flag = kernel_tex_fetch(__object_flag, object);
if (object_flag & SD_OBJECT_HAS_VERTEX_MOTION && time >= 0.0f) {
motion_triangle_vertices(kg, object, prim, time, V);
has_motion = true;
}
else {
triangle_vertices(kg, prim, V);
}
#ifdef __INSTANCING__
if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
# ifdef __OBJECT_MOTION__
float object_time = (time >= 0.0f) ? time : 0.5f;
Transform tfm = object_fetch_transform_motion_test(kg, object, object_time, NULL);
# else
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
# endif
V[0] = transform_point(&tfm, V[0]);
V[1] = transform_point(&tfm, V[1]);
V[2] = transform_point(&tfm, V[2]);
has_motion = true;
}
#endif
return has_motion;
}
ccl_device_inline float triangle_light_pdf_area(KernelGlobals *kg,
const float3 Ng,
const float3 I,
float t)
{
float pdf = kernel_data.integrator.pdf_triangles;
float cos_pi = fabsf(dot(Ng, I));
if (cos_pi == 0.0f)
return 0.0f;
return t * t * pdf / cos_pi;
}
ccl_device_forceinline float triangle_light_pdf(KernelGlobals *kg, ShaderData *sd, float t)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
bool has_motion = triangle_world_space_vertices(kg, sd->object, sd->prim, sd->time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
const float3 N = cross(e0, e1);
const float distance_to_plane = fabsf(dot(N, sd->I * t)) / dot(N, N);
if (longest_edge_squared > distance_to_plane * distance_to_plane) {
/* sd contains the point on the light source
* calculate Px, the point that we're shading */
const float3 Px = sd->P + sd->I * t;
const float3 v0_p = V[0] - Px;
const float3 v1_p = V[1] - Px;
const float3 v2_p = V[2] - Px;
const float3 u01 = safe_normalize(cross(v0_p, v1_p));
const float3 u02 = safe_normalize(cross(v0_p, v2_p));
const float3 u12 = safe_normalize(cross(v1_p, v2_p));
const float alpha = fast_acosf(dot(u02, u01));
const float beta = fast_acosf(-dot(u01, u12));
const float gamma = fast_acosf(dot(u02, u12));
const float solid_angle = alpha + beta + gamma - M_PI_F;
/* pdf_triangles is calculated over triangle area, but we're not sampling over its area */
if (UNLIKELY(solid_angle == 0.0f)) {
return 0.0f;
}
else {
float area = 1.0f;
if (has_motion) {
/* get the center frame vertices, this is what the PDF was calculated from */
triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
area = triangle_area(V[0], V[1], V[2]);
}
else {
area = 0.5f * len(N);
}
const float pdf = area * kernel_data.integrator.pdf_triangles;
return pdf / solid_angle;
}
}
else {
float pdf = triangle_light_pdf_area(kg, sd->Ng, sd->I, t);
if (has_motion) {
const float area = 0.5f * len(N);
if (UNLIKELY(area == 0.0f)) {
return 0.0f;
}
/* scale the PDF.
* area = the area the sample was taken from
* area_pre = the are from which pdf_triangles was calculated from */
triangle_world_space_vertices(kg, sd->object, sd->prim, -1.0f, V);
const float area_pre = triangle_area(V[0], V[1], V[2]);
pdf = pdf * area_pre / area;
}
return pdf;
}
}
ccl_device_forceinline void triangle_light_sample(KernelGlobals *kg,
int prim,
int object,
float randu,
float randv,
float time,
LightSample *ls,
const float3 P)
{
/* A naive heuristic to decide between costly solid angle sampling
* and simple area sampling, comparing the distance to the triangle plane
* to the length of the edges of the triangle. */
float3 V[3];
bool has_motion = triangle_world_space_vertices(kg, object, prim, time, V);
const float3 e0 = V[1] - V[0];
const float3 e1 = V[2] - V[0];
const float3 e2 = V[2] - V[1];
const float longest_edge_squared = max(len_squared(e0), max(len_squared(e1), len_squared(e2)));
const float3 N0 = cross(e0, e1);
float Nl = 0.0f;
ls->Ng = safe_normalize_len(N0, &Nl);
float area = 0.5f * Nl;
/* flip normal if necessary */
const int object_flag = kernel_tex_fetch(__object_flag, object);
if (object_flag & SD_OBJECT_NEGATIVE_SCALE_APPLIED) {
ls->Ng = -ls->Ng;
}
ls->eval_fac = 1.0f;
ls->shader = kernel_tex_fetch(__tri_shader, prim);
ls->object = object;
ls->prim = prim;
ls->lamp = LAMP_NONE;
ls->shader |= SHADER_USE_MIS;
ls->type = LIGHT_TRIANGLE;
float distance_to_plane = fabsf(dot(N0, V[0] - P) / dot(N0, N0));
if (longest_edge_squared > distance_to_plane * distance_to_plane) {
/* see James Arvo, "Stratified Sampling of Spherical Triangles"
* http://www.graphics.cornell.edu/pubs/1995/Arv95c.pdf */
/* project the triangle to the unit sphere
* and calculate its edges and angles */
const float3 v0_p = V[0] - P;
const float3 v1_p = V[1] - P;
const float3 v2_p = V[2] - P;
const float3 u01 = safe_normalize(cross(v0_p, v1_p));
const float3 u02 = safe_normalize(cross(v0_p, v2_p));
const float3 u12 = safe_normalize(cross(v1_p, v2_p));
const float3 A = safe_normalize(v0_p);
const float3 B = safe_normalize(v1_p);
const float3 C = safe_normalize(v2_p);
const float cos_alpha = dot(u02, u01);
const float cos_beta = -dot(u01, u12);
const float cos_gamma = dot(u02, u12);
/* calculate dihedral angles */
const float alpha = fast_acosf(cos_alpha);
const float beta = fast_acosf(cos_beta);
const float gamma = fast_acosf(cos_gamma);
/* the area of the unit spherical triangle = solid angle */
const float solid_angle = alpha + beta + gamma - M_PI_F;
/* precompute a few things
* these could be re-used to take several samples
* as they are independent of randu/randv */
const float cos_c = dot(A, B);
const float sin_alpha = fast_sinf(alpha);
const float product = sin_alpha * cos_c;
/* Select a random sub-area of the spherical triangle
* and calculate the third vertex C_ of that new triangle */
const float phi = randu * solid_angle - alpha;
float s, t;
fast_sincosf(phi, &s, &t);
const float u = t - cos_alpha;
const float v = s + product;
const float3 U = safe_normalize(C - dot(C, A) * A);
float q = 1.0f;
const float det = ((v * s + u * t) * sin_alpha);
if (det != 0.0f) {
q = ((v * t - u * s) * cos_alpha - v) / det;
}
const float temp = max(1.0f - q * q, 0.0f);
const float3 C_ = safe_normalize(q * A + sqrtf(temp) * U);
/* Finally, select a random point along the edge of the new triangle
* That point on the spherical triangle is the sampled ray direction */
const float z = 1.0f - randv * (1.0f - dot(C_, B));
ls->D = z * B + safe_sqrtf(1.0f - z * z) * safe_normalize(C_ - dot(C_, B) * B);
/* calculate intersection with the planar triangle */
if (!ray_triangle_intersect(P,
ls->D,
FLT_MAX,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
(ssef *)V,
#else
V[0],
V[1],
V[2],
#endif
&ls->u,
&ls->v,
&ls->t)) {
ls->pdf = 0.0f;
return;
}
ls->P = P + ls->D * ls->t;
/* pdf_triangles is calculated over triangle area, but we're sampling over solid angle */
if (UNLIKELY(solid_angle == 0.0f)) {
ls->pdf = 0.0f;
return;
}
else {
if (has_motion) {
/* get the center frame vertices, this is what the PDF was calculated from */
triangle_world_space_vertices(kg, object, prim, -1.0f, V);
area = triangle_area(V[0], V[1], V[2]);
}
const float pdf = area * kernel_data.integrator.pdf_triangles;
ls->pdf = pdf / solid_angle;
}
}
else {
/* compute random point in triangle. From Eric Heitz's "A Low-Distortion Map Between Triangle
* and Square" */
float u = randu;
float v = randv;
if (v > u) {
u *= 0.5f;
v -= u;
}
else {
v *= 0.5f;
u -= v;
}
const float t = 1.0f - u - v;
ls->P = u * V[0] + v * V[1] + t * V[2];
/* compute incoming direction, distance and pdf */
ls->D = normalize_len(ls->P - P, &ls->t);
ls->pdf = triangle_light_pdf_area(kg, ls->Ng, -ls->D, ls->t);
if (has_motion && area != 0.0f) {
/* scale the PDF.
* area = the area the sample was taken from
* area_pre = the are from which pdf_triangles was calculated from */
triangle_world_space_vertices(kg, object, prim, -1.0f, V);
const float area_pre = triangle_area(V[0], V[1], V[2]);
ls->pdf = ls->pdf * area_pre / area;
}
ls->u = u;
ls->v = v;
}
}
/* Light Distribution */
ccl_device int light_distribution_sample(KernelGlobals *kg, float *randu)
{
/* This is basically std::upper_bound as used by pbrt, to find a point light or
* triangle to emit from, proportional to area. a good improvement would be to
* also sample proportional to power, though it's not so well defined with
* arbitrary shaders. */
int first = 0;
int len = kernel_data.integrator.num_distribution + 1;
float r = *randu;
do {
int half_len = len >> 1;
int middle = first + half_len;
if (r < kernel_tex_fetch(__light_distribution, middle).totarea) {
len = half_len;
}
else {
first = middle + 1;
len = len - half_len - 1;
}
} while (len > 0);
/* Clamping should not be needed but float rounding errors seem to
* make this fail on rare occasions. */
int index = clamp(first - 1, 0, kernel_data.integrator.num_distribution - 1);
/* Rescale to reuse random number. this helps the 2D samples within
* each area light be stratified as well. */
float distr_min = kernel_tex_fetch(__light_distribution, index).totarea;
float distr_max = kernel_tex_fetch(__light_distribution, index + 1).totarea;
*randu = (r - distr_min) / (distr_max - distr_min);
return index;
}
/* Generic Light */
ccl_device_inline bool light_select_reached_max_bounces(KernelGlobals *kg, int index, int bounce)
{
return (bounce > kernel_tex_fetch(__lights, index).max_bounces);
}
ccl_device_noinline bool light_sample(KernelGlobals *kg,
int lamp,
float randu,
float randv,
float time,
float3 P,
int bounce,
LightSample *ls)
{
if (lamp < 0) {
/* sample index */
int index = light_distribution_sample(kg, &randu);
/* fetch light data */
const ccl_global KernelLightDistribution *kdistribution = &kernel_tex_fetch(
__light_distribution, index);
int prim = kdistribution->prim;
if (prim >= 0) {
int object = kdistribution->mesh_light.object_id;
int shader_flag = kdistribution->mesh_light.shader_flag;
triangle_light_sample(kg, prim, object, randu, randv, time, ls, P);
ls->shader |= shader_flag;
return (ls->pdf > 0.0f);
}
lamp = -prim - 1;
}
if (UNLIKELY(light_select_reached_max_bounces(kg, lamp, bounce))) {
return false;
}
return lamp_light_sample(kg, lamp, randu, randv, P, ls);
}
ccl_device_inline int light_select_num_samples(KernelGlobals *kg, int index)
{
return kernel_tex_fetch(__lights, index).samples;
}
CCL_NAMESPACE_END