blender/intern/cycles/kernel/kernel_subsurface.h
Patrick Mours bd2b1a67a7 Fix T74939: Random Walk subsurface appearance in OptiX does not match other engines
Random Walk subsurface scattering did look different with OptiX because transmittance is
calculated based on the hit distance, but the OptiX implementation of `scene_intersect_local`
would return the distance in world space, while the Cycles BVH version returns it in object
space. This fixes the problem by simply skipping the object->world transforms in all the
places using the result of `scene_intersect_local` with OptiX.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D7232
2020-03-26 13:00:09 +01:00

507 lines
17 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* BSSRDF using disk based importance sampling.
*
* BSSRDF Importance Sampling, SIGGRAPH 2013
* http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
*/
ccl_device_inline float3
subsurface_scatter_eval(ShaderData *sd, const ShaderClosure *sc, float disk_r, float r, bool all)
{
/* this is the veach one-sample model with balance heuristic, some pdf
* factors drop out when using balance heuristic weighting */
float3 eval_sum = make_float3(0.0f, 0.0f, 0.0f);
float pdf_sum = 0.0f;
float sample_weight_inv = 0.0f;
if (!all) {
float sample_weight_sum = 0.0f;
for (int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
sample_weight_sum += sc->sample_weight;
}
}
sample_weight_inv = 1.0f / sample_weight_sum;
}
for (int i = 0; i < sd->num_closure; i++) {
sc = &sd->closure[i];
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
/* in case of branched path integrate we sample all bssrdf's once,
* for path trace we pick one, so adjust pdf for that */
float sample_weight = (all) ? 1.0f : sc->sample_weight * sample_weight_inv;
/* compute pdf */
float3 eval = bssrdf_eval(sc, r);
float pdf = bssrdf_pdf(sc, disk_r);
eval_sum += sc->weight * eval;
pdf_sum += sample_weight * pdf;
}
}
return (pdf_sum > 0.0f) ? eval_sum / pdf_sum : make_float3(0.0f, 0.0f, 0.0f);
}
/* replace closures with a single diffuse bsdf closure after scatter step */
ccl_device void subsurface_scatter_setup_diffuse_bsdf(
KernelGlobals *kg, ShaderData *sd, ClosureType type, float roughness, float3 weight, float3 N)
{
sd->flag &= ~SD_CLOSURE_FLAGS;
sd->num_closure = 0;
sd->num_closure_left = kernel_data.integrator.max_closures;
#ifdef __PRINCIPLED__
if (type == CLOSURE_BSSRDF_PRINCIPLED_ID || type == CLOSURE_BSSRDF_PRINCIPLED_RANDOM_WALK_ID) {
PrincipledDiffuseBsdf *bsdf = (PrincipledDiffuseBsdf *)bsdf_alloc(
sd, sizeof(PrincipledDiffuseBsdf), weight);
if (bsdf) {
bsdf->N = N;
bsdf->roughness = roughness;
sd->flag |= bsdf_principled_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_PRINCIPLED_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular Disney principled diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_PRINCIPLED_ID;
}
}
else if (CLOSURE_IS_BSDF_BSSRDF(type) || CLOSURE_IS_BSSRDF(type))
#endif /* __PRINCIPLED__ */
{
DiffuseBsdf *bsdf = (DiffuseBsdf *)bsdf_alloc(sd, sizeof(DiffuseBsdf), weight);
if (bsdf) {
bsdf->N = N;
sd->flag |= bsdf_diffuse_setup(bsdf);
/* replace CLOSURE_BSDF_DIFFUSE_ID with this special ID so render passes
* can recognize it as not being a regular diffuse closure */
bsdf->type = CLOSURE_BSDF_BSSRDF_ID;
}
}
}
/* optionally do blurring of color and/or bump mapping, at the cost of a shader evaluation */
ccl_device float3 subsurface_color_pow(float3 color, float exponent)
{
color = max(color, make_float3(0.0f, 0.0f, 0.0f));
if (exponent == 1.0f) {
/* nothing to do */
}
else if (exponent == 0.5f) {
color.x = sqrtf(color.x);
color.y = sqrtf(color.y);
color.z = sqrtf(color.z);
}
else {
color.x = powf(color.x, exponent);
color.y = powf(color.y, exponent);
color.z = powf(color.z, exponent);
}
return color;
}
ccl_device void subsurface_color_bump_blur(
KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, float3 *eval, float3 *N)
{
/* average color and texture blur at outgoing point */
float texture_blur;
float3 out_color = shader_bssrdf_sum(sd, NULL, &texture_blur);
/* do we have bump mapping? */
bool bump = (sd->flag & SD_HAS_BSSRDF_BUMP) != 0;
if (bump || texture_blur > 0.0f) {
/* average color and normal at incoming point */
shader_eval_surface(kg, sd, state, NULL, state->flag);
float3 in_color = shader_bssrdf_sum(sd, (bump) ? N : NULL, NULL);
/* we simply divide out the average color and multiply with the average
* of the other one. we could try to do this per closure but it's quite
* tricky to match closures between shader evaluations, their number and
* order may change, this is simpler */
if (texture_blur > 0.0f) {
out_color = subsurface_color_pow(out_color, texture_blur);
in_color = subsurface_color_pow(in_color, texture_blur);
*eval *= safe_divide_color(in_color, out_color);
}
}
}
/* Subsurface scattering step, from a point on the surface to other
* nearby points on the same object.
*/
ccl_device_inline int subsurface_scatter_disk(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
const ShaderClosure *sc,
uint *lcg_state,
float disk_u,
float disk_v,
bool all)
{
/* pick random axis in local frame and point on disk */
float3 disk_N, disk_T, disk_B;
float pick_pdf_N, pick_pdf_T, pick_pdf_B;
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
if (disk_v < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
disk_v *= 2.0f;
}
else if (disk_v < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
disk_v = (disk_v - 0.5f) * 4.0f;
}
else {
float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
disk_v = (disk_v - 0.75f) * 4.0f;
}
/* sample point on disk */
float phi = M_2PI_F * disk_v;
float disk_height, disk_r;
bssrdf_sample(sc, disk_u, &disk_r, &disk_height);
float3 disk_P = (disk_r * cosf(phi)) * disk_T + (disk_r * sinf(phi)) * disk_B;
/* create ray */
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
ray->P = sd->P + disk_N * disk_height + disk_P;
ray->D = -disk_N;
ray->t = 2.0f * disk_height;
ray->dP = sd->dP;
ray->dD = differential3_zero();
ray->time = sd->time;
/* intersect with the same object. if multiple intersections are found it
* will use at most BSSRDF_MAX_HITS hits, a random subset of all hits */
scene_intersect_local(kg, ray, ss_isect, sd->object, lcg_state, BSSRDF_MAX_HITS);
int num_eval_hits = min(ss_isect->num_hits, BSSRDF_MAX_HITS);
for (int hit = 0; hit < num_eval_hits; hit++) {
/* Quickly retrieve P and Ng without setting up ShaderData. */
float3 hit_P;
if (sd->type & PRIMITIVE_TRIANGLE) {
hit_P = triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray);
}
#ifdef __OBJECT_MOTION__
else if (sd->type & PRIMITIVE_MOTION_TRIANGLE) {
float3 verts[3];
motion_triangle_vertices(kg,
sd->object,
kernel_tex_fetch(__prim_index, ss_isect->hits[hit].prim),
sd->time,
verts);
hit_P = motion_triangle_refine_local(kg, sd, &ss_isect->hits[hit], ray, verts);
}
#endif /* __OBJECT_MOTION__ */
else {
ss_isect->weight[hit] = make_float3(0.0f, 0.0f, 0.0f);
continue;
}
float3 hit_Ng = ss_isect->Ng[hit];
if (ss_isect->hits[hit].object != OBJECT_NONE) {
object_normal_transform(kg, sd, &hit_Ng);
}
/* Probability densities for local frame axes. */
float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));
/* Multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic. pdf_N
* in the MIS weight and denominator cancelled out. */
float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
if (ss_isect->num_hits > BSSRDF_MAX_HITS) {
w *= ss_isect->num_hits / (float)BSSRDF_MAX_HITS;
}
/* Real distance to sampled point. */
float r = len(hit_P - sd->P);
/* Evaluate profiles. */
float3 eval = subsurface_scatter_eval(sd, sc, disk_r, r, all) * w;
ss_isect->weight[hit] = eval;
}
#ifdef __SPLIT_KERNEL__
ss_isect->ray = *ray;
#endif
return num_eval_hits;
}
ccl_device_noinline void subsurface_scatter_multi_setup(KernelGlobals *kg,
LocalIntersection *ss_isect,
int hit,
ShaderData *sd,
ccl_addr_space PathState *state,
ClosureType type,
float roughness)
{
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
/* Workaround for AMD GPU OpenCL compiler. Most probably cache bypass issue. */
#if defined(__SPLIT_KERNEL__) && defined(__KERNEL_OPENCL_AMD__) && defined(__KERNEL_GPU__)
kernel_split_params.dummy_sd_flag = sd->flag;
#endif
/* Setup new shading point. */
shader_setup_from_subsurface(kg, sd, &ss_isect->hits[hit], ray);
/* Optionally blur colors and bump mapping. */
float3 weight = ss_isect->weight[hit];
float3 N = sd->N;
subsurface_color_bump_blur(kg, sd, state, &weight, &N);
/* Setup diffuse BSDF. */
subsurface_scatter_setup_diffuse_bsdf(kg, sd, type, roughness, weight, N);
}
/* Random walk subsurface scattering.
*
* "Practical and Controllable Subsurface Scattering for Production Path
* Tracing". Matt Jen-Yuan Chiang, Peter Kutz, Brent Burley. SIGGRAPH 2016. */
ccl_device void subsurface_random_walk_remap(const float A,
const float d,
float *sigma_t,
float *sigma_s)
{
/* Compute attenuation and scattering coefficients from albedo. */
const float a = 1.0f - expf(A * (-5.09406f + A * (2.61188f - A * 4.31805f)));
const float s = 1.9f - A + 3.5f * sqr(A - 0.8f);
*sigma_t = 1.0f / fmaxf(d * s, 1e-16f);
*sigma_s = *sigma_t * a;
}
ccl_device void subsurface_random_walk_coefficients(const ShaderClosure *sc,
float3 *sigma_t,
float3 *sigma_s,
float3 *weight)
{
const Bssrdf *bssrdf = (const Bssrdf *)sc;
const float3 A = bssrdf->albedo;
const float3 d = bssrdf->radius;
float sigma_t_x, sigma_t_y, sigma_t_z;
float sigma_s_x, sigma_s_y, sigma_s_z;
subsurface_random_walk_remap(A.x, d.x, &sigma_t_x, &sigma_s_x);
subsurface_random_walk_remap(A.y, d.y, &sigma_t_y, &sigma_s_y);
subsurface_random_walk_remap(A.z, d.z, &sigma_t_z, &sigma_s_z);
*sigma_t = make_float3(sigma_t_x, sigma_t_y, sigma_t_z);
*sigma_s = make_float3(sigma_s_x, sigma_s_y, sigma_s_z);
/* Closure mixing and Fresnel weights separate from albedo. */
*weight = safe_divide_color(bssrdf->weight, A);
}
#ifdef __KERNEL_OPTIX__
ccl_device_inline /* inline trace calls */
#else
ccl_device_noinline
#endif
bool
subsurface_random_walk(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
ccl_addr_space PathState *state,
const ShaderClosure *sc,
const float bssrdf_u,
const float bssrdf_v)
{
/* Sample diffuse surface scatter into the object. */
float3 D;
float pdf;
sample_cos_hemisphere(-sd->N, bssrdf_u, bssrdf_v, &D, &pdf);
if (dot(-sd->Ng, D) <= 0.0f) {
return 0;
}
/* Convert subsurface to volume coefficients. */
float3 sigma_t, sigma_s;
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
subsurface_random_walk_coefficients(sc, &sigma_t, &sigma_s, &throughput);
/* Setup ray. */
#ifdef __SPLIT_KERNEL__
Ray ray_object = ss_isect->ray;
Ray *ray = &ray_object;
#else
Ray *ray = &ss_isect->ray;
#endif
ray->P = ray_offset(sd->P, -sd->Ng);
ray->D = D;
ray->t = FLT_MAX;
ray->time = sd->time;
/* Modify state for RNGs, decorrelated from other paths. */
uint prev_rng_offset = state->rng_offset;
uint prev_rng_hash = state->rng_hash;
state->rng_hash = cmj_hash(state->rng_hash + state->rng_offset, 0xdeadbeef);
/* Random walk until we hit the surface again. */
bool hit = false;
for (int bounce = 0; bounce < BSSRDF_MAX_BOUNCES; bounce++) {
/* Advance random number offset. */
state->rng_offset += PRNG_BOUNCE_NUM;
if (bounce > 0) {
/* Sample scattering direction. */
const float anisotropy = 0.0f;
float scatter_u, scatter_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &scatter_u, &scatter_v);
ray->D = henyey_greenstrein_sample(ray->D, anisotropy, scatter_u, scatter_v, NULL);
}
/* Sample color channel, use MIS with balance heuristic. */
float rphase = path_state_rng_1D(kg, state, PRNG_PHASE_CHANNEL);
float3 albedo = safe_divide_color(sigma_s, sigma_t);
float3 channel_pdf;
int channel = kernel_volume_sample_channel(albedo, throughput, rphase, &channel_pdf);
/* Distance sampling. */
float rdist = path_state_rng_1D(kg, state, PRNG_SCATTER_DISTANCE);
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
float t = -logf(1.0f - rdist) / sample_sigma_t;
ray->t = t;
scene_intersect_local(kg, ray, ss_isect, sd->object, NULL, 1);
hit = (ss_isect->num_hits > 0);
if (hit) {
#ifdef __KERNEL_OPTIX__
/* t is always in world space with OptiX. */
t = ss_isect->hits[0].t;
#else
/* Compute world space distance to surface hit. */
float3 D = ray->D;
object_inverse_dir_transform(kg, sd, &D);
D = normalize(D) * ss_isect->hits[0].t;
object_dir_transform(kg, sd, &D);
t = len(D);
#endif
}
/* Advance to new scatter location. */
ray->P += t * ray->D;
/* Update throughput. */
float3 transmittance = volume_color_transmittance(sigma_t, t);
float pdf = dot(channel_pdf, (hit) ? transmittance : sigma_t * transmittance);
throughput *= ((hit) ? transmittance : sigma_s * transmittance) / pdf;
if (hit) {
/* If we hit the surface, we are done. */
break;
}
/* Russian roulette. */
float terminate = path_state_rng_1D(kg, state, PRNG_TERMINATE);
float probability = min(max3(fabs(throughput)), 1.0f);
if (terminate >= probability) {
break;
}
throughput /= probability;
}
kernel_assert(isfinite_safe(throughput.x) && isfinite_safe(throughput.y) &&
isfinite_safe(throughput.z));
state->rng_offset = prev_rng_offset;
state->rng_hash = prev_rng_hash;
/* Return number of hits in ss_isect. */
if (!hit) {
return 0;
}
/* TODO: gain back performance lost from merging with disk BSSRDF. We
* only need to return on hit so this indirect ray push/pop overhead
* is not actually needed, but it does keep the code simpler. */
ss_isect->weight[0] = throughput;
#ifdef __SPLIT_KERNEL__
ss_isect->ray = *ray;
#endif
return 1;
}
ccl_device_inline int subsurface_scatter_multi_intersect(KernelGlobals *kg,
LocalIntersection *ss_isect,
ShaderData *sd,
ccl_addr_space PathState *state,
const ShaderClosure *sc,
uint *lcg_state,
float bssrdf_u,
float bssrdf_v,
bool all)
{
if (CLOSURE_IS_DISK_BSSRDF(sc->type)) {
return subsurface_scatter_disk(kg, ss_isect, sd, sc, lcg_state, bssrdf_u, bssrdf_v, all);
}
else {
return subsurface_random_walk(kg, ss_isect, sd, state, sc, bssrdf_u, bssrdf_v);
}
}
CCL_NAMESPACE_END