blender/intern/cycles/kernel/closure/bsdf_diffuse_ramp.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

111 lines
3.8 KiB
C

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2012, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __BSDF_DIFFUSE_RAMP_H__
#define __BSDF_DIFFUSE_RAMP_H__
CCL_NAMESPACE_BEGIN
#ifdef __OSL__
typedef ccl_addr_space struct DiffuseRampBsdf {
SHADER_CLOSURE_BASE;
float3 *colors;
} DiffuseRampBsdf;
ccl_device float3 bsdf_diffuse_ramp_get_color(const float3 colors[8], float pos)
{
int MAXCOLORS = 8;
float npos = pos * (float)(MAXCOLORS - 1);
int ipos = float_to_int(npos);
if(ipos < 0)
return colors[0];
if(ipos >= (MAXCOLORS - 1))
return colors[MAXCOLORS - 1];
float offset = npos - (float)ipos;
return colors[ipos] * (1.0f - offset) + colors[ipos+1] * offset;
}
ccl_device int bsdf_diffuse_ramp_setup(DiffuseRampBsdf *bsdf)
{
bsdf->type = CLOSURE_BSDF_DIFFUSE_RAMP_ID;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device void bsdf_diffuse_ramp_blur(ShaderClosure *sc, float roughness)
{
}
ccl_device float3 bsdf_diffuse_ramp_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
const DiffuseRampBsdf *bsdf = (const DiffuseRampBsdf*)sc;
float3 N = bsdf->N;
float cos_pi = fmaxf(dot(N, omega_in), 0.0f);
*pdf = cos_pi * M_1_PI_F;
return bsdf_diffuse_ramp_get_color(bsdf->colors, cos_pi) * M_1_PI_F;
}
ccl_device float3 bsdf_diffuse_ramp_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device int bsdf_diffuse_ramp_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
const DiffuseRampBsdf *bsdf = (const DiffuseRampBsdf*)sc;
float3 N = bsdf->N;
// distribution over the hemisphere
sample_cos_hemisphere(N, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
*eval = bsdf_diffuse_ramp_get_color(bsdf->colors, *pdf * M_PI_F) * M_1_PI_F;
#ifdef __RAY_DIFFERENTIALS__
*domega_in_dx = (2 * dot(N, dIdx)) * N - dIdx;
*domega_in_dy = (2 * dot(N, dIdy)) * N - dIdy;
#endif
}
else
*pdf = 0.0f;
return LABEL_REFLECT|LABEL_DIFFUSE;
}
#endif /* __OSL__ */
CCL_NAMESPACE_END
#endif /* __BSDF_DIFFUSE_RAMP_H__ */