blender/intern/cycles/kernel/closure/bsdf_oren_nayar.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

112 lines
3.1 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BSDF_OREN_NAYAR_H__
#define __BSDF_OREN_NAYAR_H__
CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct OrenNayarBsdf {
SHADER_CLOSURE_BASE;
float roughness;
float a;
float b;
} OrenNayarBsdf;
ccl_device float3 bsdf_oren_nayar_get_intensity(const ShaderClosure *sc, float3 n, float3 v, float3 l)
{
const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
float nl = max(dot(n, l), 0.0f);
float nv = max(dot(n, v), 0.0f);
float t = dot(l, v) - nl * nv;
if(t > 0.0f)
t /= max(nl, nv) + FLT_MIN;
float is = nl * (bsdf->a + bsdf->b * t);
return make_float3(is, is, is);
}
ccl_device int bsdf_oren_nayar_setup(OrenNayarBsdf *bsdf)
{
float sigma = bsdf->roughness;
bsdf->type = CLOSURE_BSDF_OREN_NAYAR_ID;
sigma = saturate(sigma);
float div = 1.0f / (M_PI_F + ((3.0f * M_PI_F - 4.0f) / 6.0f) * sigma);
bsdf->a = 1.0f * div;
bsdf->b = sigma * div;
return SD_BSDF|SD_BSDF_HAS_EVAL;
}
ccl_device bool bsdf_oren_nayar_merge(const ShaderClosure *a, const ShaderClosure *b)
{
const OrenNayarBsdf *bsdf_a = (const OrenNayarBsdf*)a;
const OrenNayarBsdf *bsdf_b = (const OrenNayarBsdf*)b;
return (isequal_float3(bsdf_a->N, bsdf_b->N)) &&
(bsdf_a->roughness == bsdf_b->roughness);
}
ccl_device float3 bsdf_oren_nayar_eval_reflect(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
if(dot(bsdf->N, omega_in) > 0.0f) {
*pdf = 0.5f * M_1_PI_F;
return bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, omega_in);
}
else {
*pdf = 0.0f;
return make_float3(0.0f, 0.0f, 0.0f);
}
}
ccl_device float3 bsdf_oren_nayar_eval_transmit(const ShaderClosure *sc, const float3 I, const float3 omega_in, float *pdf)
{
return make_float3(0.0f, 0.0f, 0.0f);
}
ccl_device int bsdf_oren_nayar_sample(const ShaderClosure *sc, float3 Ng, float3 I, float3 dIdx, float3 dIdy, float randu, float randv, float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
{
const OrenNayarBsdf *bsdf = (const OrenNayarBsdf*)sc;
sample_uniform_hemisphere(bsdf->N, randu, randv, omega_in, pdf);
if(dot(Ng, *omega_in) > 0.0f) {
*eval = bsdf_oren_nayar_get_intensity(sc, bsdf->N, I, *omega_in);
#ifdef __RAY_DIFFERENTIALS__
// TODO: find a better approximation for the bounce
*domega_in_dx = (2.0f * dot(bsdf->N, dIdx)) * bsdf->N - dIdx;
*domega_in_dy = (2.0f * dot(bsdf->N, dIdy)) * bsdf->N - dIdy;
#endif
}
else {
*pdf = 0.0f;
*eval = make_float3(0.0f, 0.0f, 0.0f);
}
return LABEL_REFLECT|LABEL_DIFFUSE;
}
CCL_NAMESPACE_END
#endif /* __BSDF_OREN_NAYAR_H__ */