forked from bartvdbraak/blender
db71b5ef88
The reported problem is a visual artefact (extra lines) generated by ChainingIterators.pySketchyChainingIterator used for sketchy chaining with the Same Object option disabled in the Parameter Editor mode. The issue is caused by an inconsistency in the internal data structure (i.e., view map). For now this fatal error condition is addressed to avoid visually incorrect results. Another fix will follow to address the cause of the internal inconsistency.
714 lines
22 KiB
Python
714 lines
22 KiB
Python
# ##### BEGIN GPL LICENSE BLOCK #####
|
|
#
|
|
# This program is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU General Public License
|
|
# as published by the Free Software Foundation; either version 2
|
|
# of the License, or (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program; if not, write to the Free Software Foundation,
|
|
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
#
|
|
# ##### END GPL LICENSE BLOCK #####
|
|
|
|
# Filename : ChainingIterators.py
|
|
# Author : Stephane Grabli
|
|
# Date : 04/08/2005
|
|
# Purpose : Chaining Iterators to be used with chaining operators
|
|
|
|
from freestyle import AdjacencyIterator, ChainingIterator, ExternalContourUP1D, Nature, TVertex
|
|
from freestyle import ContextFunctions as CF
|
|
|
|
import bpy
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature following the topology of
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
class pyChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, True, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = it.object
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature on the same
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
## You can specify whether to chain iterate over edges that were
|
|
## already visited or not.
|
|
class pyChainSilhouetteGenericIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True, stayInUnvisited=True):
|
|
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
it.increment()
|
|
continue
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = ve
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|
|
class pyExternalContourChainingIterator(ChainingIterator):
|
|
def __init__(self):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._isExternalContour = ExternalContourUP1D()
|
|
def init(self):
|
|
self._nEdges = 0
|
|
self._isInSelection = 1
|
|
def checkViewEdge(self, ve, orientation):
|
|
if orientation != 0:
|
|
vertex = ve.second_svertex()
|
|
else:
|
|
vertex = ve.first_svertex()
|
|
it = AdjacencyIterator(vertex,1,1)
|
|
while not it.is_end:
|
|
ave = it.object
|
|
if self._isExternalContour(ave):
|
|
return 1
|
|
it.increment()
|
|
print("pyExternlContourChainingIterator : didn't find next edge")
|
|
return 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if self._isExternalContour(ve):
|
|
if ve.time_stamp == CF.get_time_stamp():
|
|
winner = ve
|
|
it.increment()
|
|
|
|
self._nEdges = self._nEdges+1
|
|
if winner is None:
|
|
orient = 1
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if it.is_incoming:
|
|
orient = 0
|
|
good = self.checkViewEdge(ve,orient)
|
|
if good != 0:
|
|
winner = ve
|
|
it.increment()
|
|
return winner
|
|
|
|
## the natural chaining iterator
|
|
## with a sketchy multiple touch
|
|
class pySketchyChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, nRounds=3,stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, False, None, True)
|
|
self._timeStamp = CF.get_time_stamp()+nRounds
|
|
self._nRounds = nRounds
|
|
def init(self):
|
|
self._timeStamp = CF.get_time_stamp()+self._nRounds
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
it.increment()
|
|
continue
|
|
if (oNature & natures[i]) != 0:
|
|
if (natures[i] != oNature) != 0:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = ve
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is None:
|
|
winner = self.current_edge
|
|
if winner.chaining_time_stamp == self._timeStamp:
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
# Chaining iterator designed for sketchy style.
|
|
# can chain several times the same ViewEdge
|
|
# in order to produce multiple strokes per ViewEdge.
|
|
class pySketchyChainingIterator(ChainingIterator):
|
|
def __init__(self, nRounds=3, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, False, None, True)
|
|
self._timeStamp = CF.get_time_stamp()+nRounds
|
|
self._nRounds = nRounds
|
|
def init(self):
|
|
self._timeStamp = CF.get_time_stamp()+self._nRounds
|
|
def traverse(self, iter):
|
|
winner = None
|
|
found = False
|
|
it = AdjacencyIterator(iter)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == self.current_edge.id:
|
|
found = True
|
|
it.increment()
|
|
continue
|
|
winner = ve
|
|
it.increment()
|
|
if not found:
|
|
# This is a fatal error condition: self.current_edge must be found
|
|
# among the edges seen by the AdjacencyIterator [bug #35695].
|
|
if bpy.app.debug_freestyle:
|
|
print('pySketchyChainingIterator: current edge not found')
|
|
return None
|
|
if winner is None:
|
|
winner = self.current_edge
|
|
if winner.chaining_time_stamp == self._timeStamp:
|
|
return None
|
|
return winner
|
|
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if connexl > self._percent * self._length:
|
|
winner = None
|
|
return winner
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## size
|
|
## The max length of the occluded part
|
|
## expressed in pixels
|
|
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
|
|
def __init__(self, length):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = float(length)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
#print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if connexl > self._length:
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
## Chaining iterator that fills small occlusions
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent, l):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._absLength = l
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.time_stamp != CF.get_time_stamp():
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
|
winner = None
|
|
return winner
|
|
|
|
## Chaining iterator that fills small occlusions without caring about the
|
|
## actual selection
|
|
## percent
|
|
## The max length of the occluded part
|
|
## expressed in % of the total chain length
|
|
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
|
|
def __init__(self, percent, l):
|
|
ChainingIterator.__init__(self, False, True, None, True)
|
|
self._length = 0
|
|
self._absLength = l
|
|
self._percent = float(percent)
|
|
def init(self):
|
|
# each time we're evaluating a chain length
|
|
# we try to do it once. Thus we reinit
|
|
# the chain length here:
|
|
self._length = 0
|
|
def traverse(self, iter):
|
|
winner = None
|
|
winnerOrientation = 0
|
|
print(self.current_edge.id.first, self.current_edge.id.second)
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if ve.id == mateVE.id:
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for nat in natures:
|
|
if (self.current_edge.nature & nat) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
ve = it.object
|
|
if (ve.nature & nat) != 0:
|
|
count = count+1
|
|
winner = ve
|
|
if not it.is_incoming:
|
|
winnerOrientation = 1
|
|
else:
|
|
winnerOrientation = 0
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
if winner is not None:
|
|
# check whether this edge was part of the selection
|
|
if winner.qi != 0:
|
|
#print("---", winner.id.first, winner.id.second)
|
|
# if not, let's check whether it's short enough with
|
|
# respect to the chain made without staying in the selection
|
|
#------------------------------------------------------------
|
|
# Did we compute the prospective chain length already ?
|
|
if self._length == 0:
|
|
#if not, let's do it
|
|
_it = pyChainSilhouetteGenericIterator(0,0)
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
_it.init()
|
|
while not _it.is_end:
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.increment()
|
|
if _it.is_begin:
|
|
break;
|
|
_it.begin = winner
|
|
_it.current_edge = winner
|
|
_it.orientation = winnerOrientation
|
|
if not _it.is_begin:
|
|
_it.decrement()
|
|
while (not _it.is_end) and (not _it.is_begin):
|
|
ve = _it.object
|
|
#print("--------", ve.id.first, ve.id.second)
|
|
self._length = self._length + ve.length_2d
|
|
_it.decrement()
|
|
|
|
# let's do the comparison:
|
|
# nw let's compute the length of this connex non selected part:
|
|
connexl = 0
|
|
_cit = pyChainSilhouetteGenericIterator(0,0)
|
|
_cit.begin = winner
|
|
_cit.current_edge = winner
|
|
_cit.orientation = winnerOrientation
|
|
_cit.init()
|
|
while not _cit.is_end and _cit.object.qi != 0:
|
|
ve = _cit.object
|
|
#print("-------- --------", ve.id.first, ve.id.second)
|
|
connexl = connexl + ve.length_2d
|
|
_cit.increment()
|
|
if (connexl > self._percent * self._length) or (connexl > self._absLength):
|
|
winner = None
|
|
return winner
|
|
|
|
|
|
## the natural chaining iterator
|
|
## It follows the edges of same nature on the same
|
|
## objects with preseance on silhouettes, then borders,
|
|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
|
|
## You can specify whether to stay in the selection or not.
|
|
class pyNoIdChainSilhouetteIterator(ChainingIterator):
|
|
def __init__(self, stayInSelection=True):
|
|
ChainingIterator.__init__(self, stayInSelection, True, None, True)
|
|
def init(self):
|
|
pass
|
|
def traverse(self, iter):
|
|
winner = None
|
|
it = AdjacencyIterator(iter)
|
|
tvertex = self.next_vertex
|
|
if type(tvertex) is TVertex:
|
|
mateVE = tvertex.get_mate(self.current_edge)
|
|
while not it.is_end:
|
|
ve = it.object
|
|
feB = self.current_edge.last_fedge
|
|
feA = ve.first_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.first_fedge
|
|
feB = ve.last_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.last_fedge
|
|
feB = ve.last_fedge
|
|
vB = feB.second_svertex
|
|
vA = feA.second_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
feA = self.current_edge.first_fedge
|
|
feB = ve.first_fedge
|
|
vB = feB.first_svertex
|
|
vA = feA.first_svertex
|
|
if vA.id.first == vB.id.first:
|
|
winner = ve
|
|
break
|
|
it.increment()
|
|
else:
|
|
## case of NonTVertex
|
|
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
|
|
for i in range(len(natures)):
|
|
currentNature = self.current_edge.nature
|
|
if (natures[i] & currentNature) != 0:
|
|
count=0
|
|
while not it.is_end:
|
|
visitNext = 0
|
|
oNature = it.object.nature
|
|
if (oNature & natures[i]) != 0:
|
|
if natures[i] != oNature:
|
|
for j in range(i):
|
|
if (natures[j] & oNature) != 0:
|
|
visitNext = 1
|
|
break
|
|
if visitNext != 0:
|
|
break
|
|
count = count+1
|
|
winner = it.object
|
|
it.increment()
|
|
if count != 1:
|
|
winner = None
|
|
break
|
|
return winner
|
|
|