blender/release/scripts/freestyle/style_modules/ChainingIterators.py
Tamito Kajiyama db71b5ef88 Partial fix for Bug #35695: Freestyle produces extra line across an object with pointed areas.
The reported problem is a visual artefact (extra lines) generated by 
ChainingIterators.pySketchyChainingIterator used for sketchy chaining with the Same Object
option disabled in the Parameter Editor mode.  The issue is caused by an inconsistency in
the internal data structure (i.e., view map).  For now this fatal error condition is addressed
to avoid visually incorrect results.  Another fix will follow to address the cause of the
internal inconsistency.
2013-07-04 20:24:22 +00:00

714 lines
22 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# Filename : ChainingIterators.py
# Author : Stephane Grabli
# Date : 04/08/2005
# Purpose : Chaining Iterators to be used with chaining operators
from freestyle import AdjacencyIterator, ChainingIterator, ExternalContourUP1D, Nature, TVertex
from freestyle import ContextFunctions as CF
import bpy
## the natural chaining iterator
## It follows the edges of same nature following the topology of
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, True, None, True)
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = it.object
it.increment()
if count != 1:
winner = None
break
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
## You can specify whether to chain iterate over edges that were
## already visited or not.
class pyChainSilhouetteGenericIterator(ChainingIterator):
def __init__(self, stayInSelection=True, stayInUnvisited=True):
ChainingIterator.__init__(self, stayInSelection, stayInUnvisited, None, True)
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
ve = it.object
if ve.id == self.current_edge.id:
it.increment()
continue
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = ve
it.increment()
if count != 1:
winner = None
break
return winner
class pyExternalContourChainingIterator(ChainingIterator):
def __init__(self):
ChainingIterator.__init__(self, False, True, None, True)
self._isExternalContour = ExternalContourUP1D()
def init(self):
self._nEdges = 0
self._isInSelection = 1
def checkViewEdge(self, ve, orientation):
if orientation != 0:
vertex = ve.second_svertex()
else:
vertex = ve.first_svertex()
it = AdjacencyIterator(vertex,1,1)
while not it.is_end:
ave = it.object
if self._isExternalContour(ave):
return 1
it.increment()
print("pyExternlContourChainingIterator : didn't find next edge")
return 0
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if self._isExternalContour(ve):
if ve.time_stamp == CF.get_time_stamp():
winner = ve
it.increment()
self._nEdges = self._nEdges+1
if winner is None:
orient = 1
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if it.is_incoming:
orient = 0
good = self.checkViewEdge(ve,orient)
if good != 0:
winner = ve
it.increment()
return winner
## the natural chaining iterator
## with a sketchy multiple touch
class pySketchyChainSilhouetteIterator(ChainingIterator):
def __init__(self, nRounds=3,stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, False, None, True)
self._timeStamp = CF.get_time_stamp()+nRounds
self._nRounds = nRounds
def init(self):
self._timeStamp = CF.get_time_stamp()+self._nRounds
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
ve = it.object
if ve.id == self.current_edge.id:
it.increment()
continue
if (oNature & natures[i]) != 0:
if (natures[i] != oNature) != 0:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = ve
it.increment()
if count != 1:
winner = None
break
if winner is None:
winner = self.current_edge
if winner.chaining_time_stamp == self._timeStamp:
winner = None
return winner
# Chaining iterator designed for sketchy style.
# can chain several times the same ViewEdge
# in order to produce multiple strokes per ViewEdge.
class pySketchyChainingIterator(ChainingIterator):
def __init__(self, nRounds=3, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, False, None, True)
self._timeStamp = CF.get_time_stamp()+nRounds
self._nRounds = nRounds
def init(self):
self._timeStamp = CF.get_time_stamp()+self._nRounds
def traverse(self, iter):
winner = None
found = False
it = AdjacencyIterator(iter)
while not it.is_end:
ve = it.object
if ve.id == self.current_edge.id:
found = True
it.increment()
continue
winner = ve
it.increment()
if not found:
# This is a fatal error condition: self.current_edge must be found
# among the edges seen by the AdjacencyIterator [bug #35695].
if bpy.app.debug_freestyle:
print('pySketchyChainingIterator: current edge not found')
return None
if winner is None:
winner = self.current_edge
if winner.chaining_time_stamp == self._timeStamp:
return None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
def __init__(self, percent):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._percent = float(percent)
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != CF.get_time_stamp():
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if connexl > self._percent * self._length:
winner = None
return winner
## Chaining iterator that fills small occlusions
## size
## The max length of the occluded part
## expressed in pixels
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
def __init__(self, length):
ChainingIterator.__init__(self, False, True, None, True)
self._length = float(length)
def init(self):
pass
def traverse(self, iter):
winner = None
winnerOrientation = 0
#print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != CF.get_time_stamp():
#print("---", winner.id.first, winner.id.second)
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if connexl > self._length:
winner = None
return winner
## Chaining iterator that fills small occlusions
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._absLength = l
self._percent = float(percent)
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.time_stamp != CF.get_time_stamp():
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while _cit.is_end == 0 and _cit.object.time_stamp != CF.get_time_stamp():
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if (connexl > self._percent * self._length) or (connexl > self._absLength):
winner = None
return winner
## Chaining iterator that fills small occlusions without caring about the
## actual selection
## percent
## The max length of the occluded part
## expressed in % of the total chain length
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
def __init__(self, percent, l):
ChainingIterator.__init__(self, False, True, None, True)
self._length = 0
self._absLength = l
self._percent = float(percent)
def init(self):
# each time we're evaluating a chain length
# we try to do it once. Thus we reinit
# the chain length here:
self._length = 0
def traverse(self, iter):
winner = None
winnerOrientation = 0
print(self.current_edge.id.first, self.current_edge.id.second)
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
if ve.id == mateVE.id:
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for nat in natures:
if (self.current_edge.nature & nat) != 0:
count=0
while not it.is_end:
ve = it.object
if (ve.nature & nat) != 0:
count = count+1
winner = ve
if not it.is_incoming:
winnerOrientation = 1
else:
winnerOrientation = 0
it.increment()
if count != 1:
winner = None
break
if winner is not None:
# check whether this edge was part of the selection
if winner.qi != 0:
#print("---", winner.id.first, winner.id.second)
# if not, let's check whether it's short enough with
# respect to the chain made without staying in the selection
#------------------------------------------------------------
# Did we compute the prospective chain length already ?
if self._length == 0:
#if not, let's do it
_it = pyChainSilhouetteGenericIterator(0,0)
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
_it.init()
while not _it.is_end:
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.increment()
if _it.is_begin:
break;
_it.begin = winner
_it.current_edge = winner
_it.orientation = winnerOrientation
if not _it.is_begin:
_it.decrement()
while (not _it.is_end) and (not _it.is_begin):
ve = _it.object
#print("--------", ve.id.first, ve.id.second)
self._length = self._length + ve.length_2d
_it.decrement()
# let's do the comparison:
# nw let's compute the length of this connex non selected part:
connexl = 0
_cit = pyChainSilhouetteGenericIterator(0,0)
_cit.begin = winner
_cit.current_edge = winner
_cit.orientation = winnerOrientation
_cit.init()
while not _cit.is_end and _cit.object.qi != 0:
ve = _cit.object
#print("-------- --------", ve.id.first, ve.id.second)
connexl = connexl + ve.length_2d
_cit.increment()
if (connexl > self._percent * self._length) or (connexl > self._absLength):
winner = None
return winner
## the natural chaining iterator
## It follows the edges of same nature on the same
## objects with preseance on silhouettes, then borders,
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
## You can specify whether to stay in the selection or not.
class pyNoIdChainSilhouetteIterator(ChainingIterator):
def __init__(self, stayInSelection=True):
ChainingIterator.__init__(self, stayInSelection, True, None, True)
def init(self):
pass
def traverse(self, iter):
winner = None
it = AdjacencyIterator(iter)
tvertex = self.next_vertex
if type(tvertex) is TVertex:
mateVE = tvertex.get_mate(self.current_edge)
while not it.is_end:
ve = it.object
feB = self.current_edge.last_fedge
feA = ve.first_fedge
vB = feB.second_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.first_fedge
feB = ve.last_fedge
vB = feB.second_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.last_fedge
feB = ve.last_fedge
vB = feB.second_svertex
vA = feA.second_svertex
if vA.id.first == vB.id.first:
winner = ve
break
feA = self.current_edge.first_fedge
feB = ve.first_fedge
vB = feB.first_svertex
vA = feA.first_svertex
if vA.id.first == vB.id.first:
winner = ve
break
it.increment()
else:
## case of NonTVertex
natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
for i in range(len(natures)):
currentNature = self.current_edge.nature
if (natures[i] & currentNature) != 0:
count=0
while not it.is_end:
visitNext = 0
oNature = it.object.nature
if (oNature & natures[i]) != 0:
if natures[i] != oNature:
for j in range(i):
if (natures[j] & oNature) != 0:
visitNext = 1
break
if visitNext != 0:
break
count = count+1
winner = it.object
it.increment()
if count != 1:
winner = None
break
return winner