blender/extern/carve/lib/geom2d.cpp
Sergey Sharybin 31d679b667 Update Carve to latest update
Fixes some issues with NaN vertices in special cases.
Also adds edge interpolation routines which are currently
unused but which are requires to implement edge CD interpolation.
2014-01-27 17:04:06 +06:00

263 lines
8.2 KiB
C++

// Begin License:
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
// All rights reserved.
//
// This file is part of the Carve CSG Library (http://carve-csg.com/)
//
// This file may be used under the terms of the GNU General Public
// License version 2.0 as published by the Free Software Foundation
// and appearing in the file LICENSE.GPL2 included in the packaging of
// this file.
//
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE.
// End:
#if defined(HAVE_CONFIG_H)
# include <carve_config.h>
#endif
#include <carve/geom2d.hpp>
#include <carve/math.hpp>
#include <carve/aabb.hpp>
#include <algorithm>
#include <iostream>
namespace carve {
namespace geom2d {
bool lineSegmentIntersection_simple(const P2 &l1v1, const P2 &l1v2,
const P2 &l2v1, const P2 &l2v2) {
geom::aabb<2> l1_aabb, l2_aabb;
l1_aabb.fit(l1v1, l1v2);
l2_aabb.fit(l2v1, l2v2);
if (l1_aabb.maxAxisSeparation(l2_aabb) > 0.0) {
return false;
}
double l1v1_side = orient2d(l2v1, l2v2, l1v1);
double l1v2_side = orient2d(l2v1, l2v2, l1v2);
double l2v1_side = orient2d(l1v1, l1v2, l2v1);
double l2v2_side = orient2d(l1v1, l1v2, l2v2);
if (l1v1_side * l1v2_side > 0.0 || l2v1_side * l2v2_side > 0.0) {
return false;
}
return true;
}
bool lineSegmentIntersection_simple(const LineSegment2 &l1,
const LineSegment2 &l2) {
return lineSegmentIntersection_simple(l1.v1, l1.v2, l2.v1, l2.v2);
}
LineIntersectionInfo lineSegmentIntersection(const P2 &l1v1, const P2 &l1v2,
const P2 &l2v1, const P2 &l2v2) {
geom::aabb<2> l1_aabb, l2_aabb;
l1_aabb.fit(l1v1, l1v2);
l2_aabb.fit(l2v1, l2v2);
if (l1_aabb.maxAxisSeparation(l2_aabb) > EPSILON) {
return LineIntersectionInfo(NO_INTERSECTION);
}
if (carve::geom::equal(l1v1, l1v2) || carve::geom::equal(l2v1, l2v2)) {
throw carve::exception("zero length line in intersection test");
}
double dx13 = l1v1.x - l2v1.x;
double dy13 = l1v1.y - l2v1.y;
double dx43 = l2v2.x - l2v1.x;
double dy43 = l2v2.y - l2v1.y;
double dx21 = l1v2.x - l1v1.x;
double dy21 = l1v2.y - l1v1.y;
double ua_n = dx43 * dy13 - dy43 * dx13;
double ub_n = dx21 * dy13 - dy21 * dx13;
double u_d = dy43 * dx21 - dx43 * dy21;
if (carve::math::ZERO(u_d)) {
if (carve::math::ZERO(ua_n)) {
if (carve::geom::equal(l1v2, l2v1)) {
return LineIntersectionInfo(INTERSECTION_PP, l1v2, 1, 2);
}
if (carve::geom::equal(l1v1, l2v2)) {
return LineIntersectionInfo(INTERSECTION_PP, l1v1, 0, 4);
}
if (l1v2.x > l2v1.x && l1v1.x < l2v2.x) {
return LineIntersectionInfo(COLINEAR);
}
}
return LineIntersectionInfo(NO_INTERSECTION);
}
double ua = ua_n / u_d;
double ub = ub_n / u_d;
if (-EPSILON <= ua && ua <= 1.0 + EPSILON && -EPSILON <= ub && ub <= 1.0 + EPSILON) {
double x = l1v1.x + ua * (l1v2.x - l1v1.x);
double y = l1v1.y + ua * (l1v2.y - l1v1.y);
P2 p = carve::geom::VECTOR(x, y);
double d1 = distance2(p, l1v1);
double d2 = distance2(p, l1v2);
double d3 = distance2(p, l2v1);
double d4 = distance2(p, l2v2);
int n = -1;
if (std::min(d1, d2) < EPSILON2) {
if (d1 < d2) {
p = l1v1; n = 0;
} else {
p = l1v2; n = 1;
}
if (std::min(d3, d4) < EPSILON2) {
if (d3 < d4) {
return LineIntersectionInfo(INTERSECTION_PP, p, n, 2);
} else {
return LineIntersectionInfo(INTERSECTION_PP, p, n, 3);
}
} else {
return LineIntersectionInfo(INTERSECTION_PL, p, n, -1);
}
} else if (std::min(d3, d4) < EPSILON2) {
if (d3 < d4) {
return LineIntersectionInfo(INTERSECTION_LP, l2v1, -1, 2);
} else {
return LineIntersectionInfo(INTERSECTION_LP, l2v2, -1, 3);
}
} else {
return LineIntersectionInfo(INTERSECTION_LL, p, -1, -1);
}
}
return LineIntersectionInfo(NO_INTERSECTION);
}
LineIntersectionInfo lineSegmentIntersection(const LineSegment2 &l1,
const LineSegment2 &l2) {
return lineSegmentIntersection(l1.v1, l1.v2, l2.v1, l2.v2);
}
double signedArea(const P2Vector &points) {
return signedArea(points, p2_adapt_ident());
}
bool pointInPolySimple(const P2Vector &points, const P2 &p) {
return pointInPolySimple(points, p2_adapt_ident(), p);
}
PolyInclusionInfo pointInPoly(const P2Vector &points, const P2 &p) {
return pointInPoly(points, p2_adapt_ident(), p);
}
static int lineSegmentPolyIntersections(const P2Vector &points,
LineSegment2 line,
std::vector<PolyIntersectionInfo> &out) {
int count = 0;
if (line.v2 < line.v1) { line.flip(); }
out.clear();
for (P2Vector::size_type i = 0, l = points.size(); i < l; i++) {
P2Vector::size_type j = (i + 1) % l;
LineIntersectionInfo e =
lineSegmentIntersection(LineSegment2(points[i], points[j]), line);
switch (e.iclass) {
case INTERSECTION_PL: {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
count++;
break;
}
case INTERSECTION_PP: {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + (size_t)e.p2 - 2));
count++;
break;
}
case INTERSECTION_LP: {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, e.ipoint, i + (size_t)e.p2 - 2));
count++;
break;
}
case INTERSECTION_LL: {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, e.ipoint, i));
count++;
break;
}
case COLINEAR: {
size_t n1 = i;
size_t n2 = j;
P2 q1 = points[i], q2 = points[j];
if (q2 < q1) { std::swap(q1, q2); std::swap(n1, n2); }
if (equal(q1, line.v1)) {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
} else if (q1.x < line.v1.x) {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v1, i));
} else {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q1, n1));
}
if (equal(q2, line.v2)) {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
} else if (line.v2.x < q2.x) {
out.push_back(PolyIntersectionInfo(INTERSECT_EDGE, line.v2, i));
} else {
out.push_back(PolyIntersectionInfo(INTERSECT_VERTEX, q2, n2));
}
count += 2;
break;
}
default:
break;
}
}
return count;
}
struct FwdSort {
bool operator()(const PolyIntersectionInfo &a,
const PolyIntersectionInfo &b) const {
return a.ipoint < b.ipoint;
}
};
struct RevSort {
bool operator()(const PolyIntersectionInfo &a,
const PolyIntersectionInfo &b) const {
return a.ipoint < b.ipoint;
}
};
static int sortedLineSegmentPolyIntersections(const P2Vector &points,
LineSegment2 line,
std::vector<PolyIntersectionInfo> &out) {
bool swapped = line.v2 < line.v1;
int count = lineSegmentPolyIntersections(points, line, out);
if (swapped) {
std::sort(out.begin(), out.end(), RevSort());
} else {
std::sort(out.begin(), out.end(), FwdSort());
}
return count;
}
bool pickContainedPoint(const std::vector<P2> &poly, P2 &result) {
return pickContainedPoint(poly, p2_adapt_ident(), result);
}
}
}