forked from bartvdbraak/blender
31d679b667
Fixes some issues with NaN vertices in special cases. Also adds edge interpolation routines which are currently unused but which are requires to implement edge CD interpolation.
350 lines
10 KiB
C++
350 lines
10 KiB
C++
// Begin License:
|
|
// Copyright (C) 2006-2011 Tobias Sargeant (tobias.sargeant@gmail.com).
|
|
// All rights reserved.
|
|
//
|
|
// This file is part of the Carve CSG Library (http://carve-csg.com/)
|
|
//
|
|
// This file may be used under the terms of the GNU General Public
|
|
// License version 2.0 as published by the Free Software Foundation
|
|
// and appearing in the file LICENSE.GPL2 included in the packaging of
|
|
// this file.
|
|
//
|
|
// This file is provided "AS IS" with NO WARRANTY OF ANY KIND,
|
|
// INCLUDING THE WARRANTIES OF DESIGN, MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE.
|
|
// End:
|
|
|
|
|
|
#if defined(HAVE_CONFIG_H)
|
|
# include <carve_config.h>
|
|
#endif
|
|
|
|
#include <carve/math.hpp>
|
|
#include <carve/matrix.hpp>
|
|
|
|
#include <iostream>
|
|
#include <limits>
|
|
|
|
#include <stdio.h>
|
|
|
|
#define M_2PI_3 2.0943951023931953
|
|
#define M_SQRT_3_4 0.8660254037844386
|
|
#define EPS std::numeric_limits<double>::epsilon()
|
|
|
|
namespace carve {
|
|
namespace math {
|
|
|
|
struct Root {
|
|
double root;
|
|
int multiplicity;
|
|
|
|
Root(double r) : root(r), multiplicity(1) {}
|
|
Root(double r, int m) : root(r), multiplicity(m) {}
|
|
};
|
|
|
|
namespace {
|
|
void cplx_sqrt(double re, double im,
|
|
double &re_1, double &im_1,
|
|
double &re_2, double &im_2) {
|
|
if (re == 0.0 && im == 0.0) {
|
|
re_1 = re_2 = re;
|
|
im_1 = im_2 = im;
|
|
} else {
|
|
double d = sqrt(re * re + im * im);
|
|
re_1 = sqrt((d + re) / 2.0);
|
|
re_2 = re_1;
|
|
im_1 = fabs(sqrt((d - re) / 2.0));
|
|
im_2 = -im_1;
|
|
}
|
|
}
|
|
|
|
void cplx_cbrt(double re, double im,
|
|
double &re_1, double &im_1,
|
|
double &re_2, double &im_2,
|
|
double &re_3, double &im_3) {
|
|
if (re == 0.0 && im == 0.0) {
|
|
re_1 = re_2 = re_3 = re;
|
|
im_1 = im_2 = im_3 = im;
|
|
} else {
|
|
double r = cbrt(sqrt(re * re + im * im));
|
|
double t = atan2(im, re) / 3.0;
|
|
re_1 = r * cos(t);
|
|
im_1 = r * sin(t);
|
|
re_2 = r * cos(t + M_TWOPI / 3.0);
|
|
im_2 = r * sin(t + M_TWOPI / 3.0);
|
|
re_3 = r * cos(t + M_TWOPI * 2.0 / 3.0);
|
|
im_3 = r * sin(t + M_TWOPI * 2.0 / 3.0);
|
|
}
|
|
}
|
|
|
|
void add_root(std::vector<Root> &roots, double root) {
|
|
for (size_t i = 0; i < roots.size(); ++i) {
|
|
if (roots[i].root == root) {
|
|
roots[i].multiplicity++;
|
|
return;
|
|
}
|
|
}
|
|
roots.push_back(Root(root));
|
|
}
|
|
|
|
void linear_roots(double c1, double c0, std::vector<Root> &roots) {
|
|
roots.push_back(Root(c0 / c1));
|
|
}
|
|
|
|
void quadratic_roots(double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
if (fabs(c2) < EPS) {
|
|
linear_roots(c1, c0, roots);
|
|
return;
|
|
}
|
|
|
|
double p = 0.5 * c1 / c2;
|
|
double dis = p * p - c0 / c2;
|
|
|
|
if (dis > 0.0) {
|
|
dis = sqrt(dis);
|
|
if (-p - dis != -p + dis) {
|
|
roots.push_back(Root(-p - dis));
|
|
roots.push_back(Root(-p + dis));
|
|
} else {
|
|
roots.push_back(Root(-p, 2));
|
|
}
|
|
}
|
|
}
|
|
|
|
void cubic_roots(double c3, double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
int n_sol = 0;
|
|
double _r[3];
|
|
|
|
if (fabs(c3) < EPS) {
|
|
quadratic_roots(c2, c1, c0, roots);
|
|
return;
|
|
}
|
|
|
|
if (fabs(c0) < EPS) {
|
|
quadratic_roots(c3, c2, c1, roots);
|
|
add_root(roots, 0.0);
|
|
return;
|
|
}
|
|
|
|
double xN = -c2 / (3.0 * c3);
|
|
double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN));
|
|
|
|
double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3);
|
|
double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq);
|
|
double dis = yN * yN - h_sq;
|
|
|
|
if (dis > EPS) {
|
|
// One real root, two complex roots.
|
|
|
|
double dis_sqrt = sqrt(dis);
|
|
double r_p = yN - dis_sqrt;
|
|
double r_q = yN + dis_sqrt;
|
|
double p = cbrt(fabs(r_p)/(2.0 * c3));
|
|
double q = cbrt(fabs(r_q)/(2.0 * c3));
|
|
|
|
if (r_p > 0.0) p = -p;
|
|
if (r_q > 0.0) q = -q;
|
|
|
|
_r[0] = xN + p + q;
|
|
n_sol = 1;
|
|
|
|
double re = xN - p * .5 - q * .5;
|
|
double im = p * M_SQRT_3_4 - q * M_SQRT_3_4;
|
|
|
|
// root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i);
|
|
// root 3: complex conjugate of root 2
|
|
|
|
if (im < EPS) {
|
|
_r[1] = _r[2] = re;
|
|
n_sol += 2;
|
|
}
|
|
} else if (dis < -EPS) {
|
|
// Three distinct real roots.
|
|
double theta = acos(-yN / sqrt(h_sq)) / 3.0;
|
|
double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3);
|
|
|
|
_r[0] = xN + (2.0 * delta) * cos(theta);
|
|
_r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta);
|
|
_r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta);
|
|
n_sol = 3;
|
|
} else {
|
|
// Three real roots (two or three equal).
|
|
double r = yN / (2.0 * c3);
|
|
double delta = cbrt(r);
|
|
|
|
_r[0] = xN + delta;
|
|
_r[1] = xN + delta;
|
|
_r[2] = xN - 2.0 * delta;
|
|
n_sol = 3;
|
|
}
|
|
|
|
for (int i=0; i < n_sol; i++) {
|
|
add_root(roots, _r[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void U(const Matrix3 &m,
|
|
double l,
|
|
double u[6],
|
|
double &u_max,
|
|
int &u_argmax) {
|
|
u[0] = (m._22 - l) * (m._33 - l) - m._23 * m._23;
|
|
u[1] = m._13 * m._23 - m._12 * (m._33 - l);
|
|
u[2] = m._12 * m._23 - m._13 * (m._22 - l);
|
|
u[3] = (m._11 - l) * (m._33 - l) - m._13 * m._13;
|
|
u[4] = m._12 * m._13 - m._23 * (m._11 - l);
|
|
u[5] = (m._11 - l) * (m._22 - l) - m._12 * m._12;
|
|
|
|
u_max = -1.0;
|
|
u_argmax = -1;
|
|
|
|
for (int i = 0; i < 6; ++i) {
|
|
if (u_max < fabs(u[i])) { u_max = fabs(u[i]); u_argmax = i; }
|
|
}
|
|
}
|
|
|
|
static void eig1(const Matrix3 &m, double l, carve::geom::vector<3> &e) {
|
|
double u[6];
|
|
double u_max;
|
|
int u_argmax;
|
|
|
|
U(m, l, u, u_max, u_argmax);
|
|
|
|
switch(u_argmax) {
|
|
case 0:
|
|
e.x = u[0]; e.y = u[1]; e.z = u[2]; break;
|
|
case 1: case 3:
|
|
e.x = u[1]; e.y = u[3]; e.z = u[4]; break;
|
|
case 2: case 4: case 5:
|
|
e.x = u[2]; e.y = u[4]; e.z = u[5]; break;
|
|
}
|
|
e.normalize();
|
|
}
|
|
|
|
static void eig2(const Matrix3 &m, double l, carve::geom::vector<3> &e1, carve::geom::vector<3> &e2) {
|
|
double u[6];
|
|
double u_max;
|
|
int u_argmax;
|
|
|
|
U(m, l, u, u_max, u_argmax);
|
|
|
|
switch(u_argmax) {
|
|
case 0: case 1:
|
|
e1.x = -m._12; e1.y = m._11; e1.z = 0.0;
|
|
e2.x = -m._13 * m._11; e2.y = -m._13 * m._12; e2.z = m._11 * m._11 + m._12 * m._12;
|
|
break;
|
|
case 2:
|
|
e1.x = m._12; e1.y = 0.0; e1.z = -m._11;
|
|
e2.x = -m._12 * m._11; e2.y = m._11 * m._11 + m._13 * m._13; e2.z = -m._12 * m._13;
|
|
break;
|
|
case 3: case 4:
|
|
e1.x = 0.0; e1.y = -m._23; e1.z = -m._22;
|
|
e2.x = m._22 * m._22 + m._23 * m._23; e2.y = -m._12 * m._22; e2.z = -m._12 * m._23;
|
|
break;
|
|
case 5:
|
|
e1.x = 0.0; e1.y = -m._33; e1.z = m._23;
|
|
e2.x = m._23 * m._23 + m._33 * m._33; e2.y = -m._13 * m._23; e2.z = -m._13 * m._33;
|
|
}
|
|
e1.normalize();
|
|
e2.normalize();
|
|
}
|
|
|
|
static void eig3(const Matrix3 &m,
|
|
double l,
|
|
carve::geom::vector<3> &e1,
|
|
carve::geom::vector<3> &e2,
|
|
carve::geom::vector<3> &e3) {
|
|
e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
|
|
e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
|
|
e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
|
|
}
|
|
|
|
void eigSolveSymmetric(const Matrix3 &m,
|
|
double &l1, carve::geom::vector<3> &e1,
|
|
double &l2, carve::geom::vector<3> &e2,
|
|
double &l3, carve::geom::vector<3> &e3) {
|
|
double c0 =
|
|
m._11 * m._22 * m._33 +
|
|
2.0 * m._12 * m._13 * m._23 -
|
|
m._11 * m._23 * m._23 -
|
|
m._22 * m._13 * m._13 -
|
|
m._33 * m._12 * m._12;
|
|
double c1 =
|
|
m._11 * m._22 -
|
|
m._12 * m._12 +
|
|
m._11 * m._33 -
|
|
m._13 * m._13 +
|
|
m._22 * m._33 -
|
|
m._23 * m._23;
|
|
double c2 =
|
|
m._11 +
|
|
m._22 +
|
|
m._33;
|
|
|
|
double a = (3.0 * c1 - c2 * c2) / 3.0;
|
|
double b = (-2.0 * c2 * c2 * c2 + 9.0 * c1 * c2 - 27.0 * c0) / 27.0;
|
|
|
|
double Q = b * b / 4.0 + a * a * a / 27.0;
|
|
|
|
if (fabs(Q) < 1e-16) {
|
|
l1 = m._11; e1.x = 1.0; e1.y = 0.0; e1.z = 0.0;
|
|
l2 = m._22; e2.x = 0.0; e2.y = 1.0; e2.z = 0.0;
|
|
l3 = m._33; e3.x = 0.0; e3.y = 0.0; e3.z = 1.0;
|
|
} else if (Q > 0) {
|
|
l1 = l2 = c2 / 3.0 + cbrt(b / 2.0);
|
|
l3 = c2 / 3.0 - 2.0 * cbrt(b / 2.0);
|
|
|
|
eig2(m, l1, e1, e2);
|
|
eig1(m, l3, e3);
|
|
} else if (Q < 0) {
|
|
double t = atan2(sqrt(-Q), -b / 2.0);
|
|
double cos_t3 = cos(t / 3.0);
|
|
double sin_t3 = sin(t / 3.0);
|
|
double r = cbrt(sqrt(b * b / 4.0 - Q));
|
|
|
|
l1 = c2 / 3.0 + 2 * r * cos_t3;
|
|
l2 = c2 / 3.0 - r * (cos_t3 + M_SQRT_3 * sin_t3);
|
|
l3 = c2 / 3.0 - r * (cos_t3 - M_SQRT_3 * sin_t3);
|
|
|
|
eig1(m, l1, e1);
|
|
eig1(m, l2, e2);
|
|
eig1(m, l3, e3);
|
|
}
|
|
}
|
|
|
|
void eigSolve(const Matrix3 &m, double &l1, double &l2, double &l3) {
|
|
double c3, c2, c1, c0;
|
|
std::vector<Root> roots;
|
|
|
|
c3 = -1.0;
|
|
c2 = m._11 + m._22 + m._33;
|
|
c1 =
|
|
-(m._22 * m._33 + m._11 * m._22 + m._11 * m._33)
|
|
+(m._23 * m._32 + m._13 * m._31 + m._12 * m._21);
|
|
c0 =
|
|
+(m._11 * m._22 - m._12 * m._21) * m._33
|
|
-(m._11 * m._23 - m._13 * m._21) * m._32
|
|
+(m._12 * m._23 - m._13 * m._22) * m._31;
|
|
|
|
cubic_roots(c3, c2, c1, c0, roots);
|
|
|
|
for (size_t i = 0; i < roots.size(); i++) {
|
|
Matrix3 M(m);
|
|
M._11 -= roots[i].root;
|
|
M._22 -= roots[i].root;
|
|
M._33 -= roots[i].root;
|
|
// solve M.v = 0
|
|
}
|
|
|
|
std::cerr << "n_roots=" << roots.size() << std::endl;
|
|
for (size_t i = 0; i < roots.size(); i++) {
|
|
fprintf(stderr, " %.24f(%d)", roots[i].root, roots[i].multiplicity);
|
|
}
|
|
std::cerr << std::endl;
|
|
}
|
|
|
|
}
|
|
}
|
|
|