blender/intern/cycles/render/buffers.cpp
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

427 lines
9.4 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include "render/buffers.h"
#include "device/device.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_hash.h"
#include "util/util_image.h"
#include "util/util_math.h"
#include "util/util_opengl.h"
#include "util/util_time.h"
#include "util/util_types.h"
CCL_NAMESPACE_BEGIN
/* Buffer Params */
BufferParams::BufferParams()
{
width = 0;
height = 0;
full_x = 0;
full_y = 0;
full_width = 0;
full_height = 0;
Pass::add(PASS_COMBINED, passes);
}
void BufferParams::get_offset_stride(int& offset, int& stride)
{
offset = -(full_x + full_y*width);
stride = width;
}
bool BufferParams::modified(const BufferParams& params)
{
return !(full_x == params.full_x
&& full_y == params.full_y
&& width == params.width
&& height == params.height
&& full_width == params.full_width
&& full_height == params.full_height
&& Pass::equals(passes, params.passes));
}
int BufferParams::get_passes_size()
{
int size = 0;
for(size_t i = 0; i < passes.size(); i++)
size += passes[i].components;
return align_up(size, 4);
}
/* Render Buffer Task */
RenderTile::RenderTile()
{
x = 0;
y = 0;
w = 0;
h = 0;
sample = 0;
start_sample = 0;
num_samples = 0;
resolution = 0;
offset = 0;
stride = 0;
buffer = 0;
rng_state = 0;
buffers = NULL;
}
/* Render Buffers */
RenderBuffers::RenderBuffers(Device *device_)
{
device = device_;
}
RenderBuffers::~RenderBuffers()
{
device_free();
}
void RenderBuffers::device_free()
{
if(buffer.device_pointer) {
device->mem_free(buffer);
buffer.clear();
}
if(rng_state.device_pointer) {
device->mem_free(rng_state);
rng_state.clear();
}
}
void RenderBuffers::reset(Device *device, BufferParams& params_)
{
params = params_;
/* free existing buffers */
device_free();
/* allocate buffer */
buffer.resize(params.width*params.height*params.get_passes_size());
device->mem_alloc("render_buffer", buffer, MEM_READ_WRITE);
device->mem_zero(buffer);
/* allocate rng state */
rng_state.resize(params.width, params.height);
device->mem_alloc("rng_state", rng_state, MEM_READ_WRITE);
}
bool RenderBuffers::copy_from_device()
{
if(!buffer.device_pointer)
return false;
device->mem_copy_from(buffer, 0, params.width, params.height, params.get_passes_size()*sizeof(float));
return true;
}
bool RenderBuffers::get_pass_rect(PassType type, float exposure, int sample, int components, float *pixels)
{
int pass_offset = 0;
for(size_t j = 0; j < params.passes.size(); j++) {
Pass& pass = params.passes[j];
if(pass.type != type) {
pass_offset += pass.components;
continue;
}
float *in = (float*)buffer.data_pointer + pass_offset;
int pass_stride = params.get_passes_size();
float scale = (pass.filter)? 1.0f/(float)sample: 1.0f;
float scale_exposure = (pass.exposure)? scale*exposure: scale;
int size = params.width*params.height;
if(components == 1) {
assert(pass.components == components);
/* scalar */
if(type == PASS_DEPTH) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = (f == 0.0f)? 1e10f: f*scale_exposure;
}
}
else if(type == PASS_MIST) {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = saturate(f*scale_exposure);
}
}
#ifdef WITH_CYCLES_DEBUG
else if(type == PASS_BVH_TRAVERSED_NODES ||
type == PASS_BVH_TRAVERSED_INSTANCES ||
type == PASS_BVH_INTERSECTIONS ||
type == PASS_RAY_BOUNCES)
{
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f*scale;
}
}
#endif
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels++) {
float f = *in;
pixels[0] = f*scale_exposure;
}
}
}
else if(components == 3) {
assert(pass.components == 4);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
}
}
else if(pass.divide_type != PASS_NONE) {
/* RGB lighting passes that need to divide out color */
pass_offset = 0;
for(size_t k = 0; k < params.passes.size(); k++) {
Pass& color_pass = params.passes[k];
if(color_pass.type == pass.divide_type)
break;
pass_offset += color_pass.components;
}
float *in_divide = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_divide += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
f = safe_divide_even_color(f*exposure, f_divide);
pixels[0] = f.x;
pixels[1] = f.y;
pixels[2] = f.z;
}
}
else {
/* RGB/vector */
for(int i = 0; i < size; i++, in += pass_stride, pixels += 3) {
float3 f = make_float3(in[0], in[1], in[2]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
}
}
}
else if(components == 4) {
assert(pass.components == components);
/* RGBA */
if(type == PASS_SHADOW) {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float invw = (f.w > 0.0f)? 1.0f/f.w: 1.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = 1.0f;
}
}
else if(type == PASS_MOTION) {
/* need to normalize by number of samples accumulated for motion */
pass_offset = 0;
for(size_t k = 0; k < params.passes.size(); k++) {
Pass& color_pass = params.passes[k];
if(color_pass.type == PASS_MOTION_WEIGHT)
break;
pass_offset += color_pass.components;
}
float *in_weight = (float*)buffer.data_pointer + pass_offset;
for(int i = 0; i < size; i++, in += pass_stride, in_weight += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
float w = in_weight[0];
float invw = (w > 0.0f)? 1.0f/w: 0.0f;
pixels[0] = f.x*invw;
pixels[1] = f.y*invw;
pixels[2] = f.z*invw;
pixels[3] = f.w*invw;
}
}
else {
for(int i = 0; i < size; i++, in += pass_stride, pixels += 4) {
float4 f = make_float4(in[0], in[1], in[2], in[3]);
pixels[0] = f.x*scale_exposure;
pixels[1] = f.y*scale_exposure;
pixels[2] = f.z*scale_exposure;
/* clamp since alpha might be > 1.0 due to russian roulette */
pixels[3] = saturate(f.w*scale);
}
}
}
return true;
}
return false;
}
/* Display Buffer */
DisplayBuffer::DisplayBuffer(Device *device_, bool linear)
{
device = device_;
draw_width = 0;
draw_height = 0;
transparent = true; /* todo: determine from background */
half_float = linear;
}
DisplayBuffer::~DisplayBuffer()
{
device_free();
}
void DisplayBuffer::device_free()
{
if(rgba_byte.device_pointer) {
device->pixels_free(rgba_byte);
rgba_byte.clear();
}
if(rgba_half.device_pointer) {
device->pixels_free(rgba_half);
rgba_half.clear();
}
}
void DisplayBuffer::reset(Device *device, BufferParams& params_)
{
draw_width = 0;
draw_height = 0;
params = params_;
/* free existing buffers */
device_free();
/* allocate display pixels */
if(half_float) {
rgba_half.resize(params.width, params.height);
device->pixels_alloc(rgba_half);
}
else {
rgba_byte.resize(params.width, params.height);
device->pixels_alloc(rgba_byte);
}
}
void DisplayBuffer::draw_set(int width, int height)
{
assert(width <= params.width && height <= params.height);
draw_width = width;
draw_height = height;
}
void DisplayBuffer::draw(Device *device, const DeviceDrawParams& draw_params)
{
if(draw_width != 0 && draw_height != 0) {
device_memory& rgba = rgba_data();
device->draw_pixels(rgba, 0, draw_width, draw_height, params.full_x, params.full_y, params.width, params.height, transparent, draw_params);
}
}
bool DisplayBuffer::draw_ready()
{
return (draw_width != 0 && draw_height != 0);
}
void DisplayBuffer::write(Device *device, const string& filename)
{
int w = draw_width;
int h = draw_height;
if(w == 0 || h == 0)
return;
if(half_float)
return;
/* read buffer from device */
device_memory& rgba = rgba_data();
device->pixels_copy_from(rgba, 0, w, h);
/* write image */
ImageOutput *out = ImageOutput::create(filename);
ImageSpec spec(w, h, 4, TypeDesc::UINT8);
int scanlinesize = w*4*sizeof(uchar);
out->open(filename, spec);
/* conversion for different top/bottom convention */
out->write_image(TypeDesc::UINT8,
(uchar*)rgba.data_pointer + (h-1)*scanlinesize,
AutoStride,
-scanlinesize,
AutoStride);
out->close();
delete out;
}
device_memory& DisplayBuffer::rgba_data()
{
if(half_float)
return rgba_half;
else
return rgba_byte;
}
CCL_NAMESPACE_END