blender/intern/cycles/kernel/svm/svm_closure.h
Lukas Stockner 23c276832b Cycles: Add multi-scattering, energy-conserving GGX as an option to the Glossy, Anisotropic and Glass BSDFs
This commit adds a new distribution to the Glossy, Anisotropic and Glass BSDFs that implements the
multiple-scattering microfacet model described in the paper "Multiple-Scattering Microfacet BSDFs with the Smith Model".

Essentially, the improvement is that unlike classical GGX, which only models single scattering and assumes
the contribution of multiple bounces to be zero, this new model performs a random walk on the microsurface until
the ray leaves it again, which ensures perfect energy conservation.

In practise, this means that the "darkening problem" - GGX materials becoming darker with increasing
roughness - is solved in a physically correct and efficient way.

The downside of this model is that it has no (known) analytic expression for evalation. However, it can be
evaluated stochastically, and although the correct PDF isn't known either, the properties of MIS and the
balance heuristic guarantee an unbiased result at the cost of slightly higher noise.

Reviewers: dingto, #cycles, brecht

Reviewed By: dingto, #cycles, brecht

Subscribers: bliblubli, ace_dragon, gregzaal, brecht, harvester, dingto, marcog, swerner, jtheninja, Blendify, nutel

Differential Revision: https://developer.blender.org/D2002
2016-06-23 22:57:26 +02:00

754 lines
21 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Closure Nodes */
ccl_device void svm_node_glass_setup(ShaderData *sd, ShaderClosure *sc, int type, float eta, float roughness, bool refract)
{
if(type == CLOSURE_BSDF_SHARP_GLASS_ID) {
if(refract) {
sc->data0 = eta;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_refraction_setup(sc);
}
else {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_reflection_setup(sc);
}
}
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID) {
sc->data0 = roughness;
sc->data1 = roughness;
sc->data2 = eta;
if(refract)
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = roughness;
sc->data2 = eta;
if(refract)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_refraction_setup(sc);
else
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(sc);
}
}
ccl_device_inline ShaderClosure *svm_node_closure_get_non_bsdf(ShaderData *sd, ClosureType type, float mix_weight)
{
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
if(ccl_fetch(sd, num_closure) < MAX_CLOSURE) {
sc->weight *= mix_weight;
sc->type = type;
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
#ifdef __OSL__
sc->prim = NULL;
#endif
ccl_fetch(sd, num_closure)++;
return sc;
}
return NULL;
}
ccl_device_inline ShaderClosure *svm_node_closure_get_bsdf(ShaderData *sd, float mix_weight)
{
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && ccl_fetch(sd, num_closure) < MAX_CLOSURE) {
sc->weight = weight;
sc->sample_weight = sample_weight;
ccl_fetch(sd, num_closure)++;
#ifdef __OSL__
sc->prim = NULL;
#endif
return sc;
}
return NULL;
}
ccl_device_inline ShaderClosure *svm_node_closure_get_absorption(ShaderData *sd, float mix_weight)
{
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
float3 weight = (make_float3(1.0f, 1.0f, 1.0f) - sc->weight) * mix_weight;
float sample_weight = fabsf(average(weight));
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && ccl_fetch(sd, num_closure) < MAX_CLOSURE) {
sc->weight = weight;
sc->sample_weight = sample_weight;
ccl_fetch(sd, num_closure)++;
#ifdef __OSL__
sc->prim = NULL;
#endif
return sc;
}
return NULL;
}
ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag, int *offset)
{
uint type, param1_offset, param2_offset;
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
/* note we read this extra node before weight check, so offset is added */
uint4 data_node = read_node(kg, offset);
if(mix_weight == 0.0f)
return;
float3 N = stack_valid(data_node.x)? stack_load_float3(stack, data_node.x): ccl_fetch(sd, N);
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
switch(type) {
case CLOSURE_BSDF_DIFFUSE_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
float roughness = param1;
if(roughness == 0.0f) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_diffuse_setup(sc);
}
else {
sc->data0 = roughness;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_oren_nayar_setup(sc);
}
}
break;
}
case CLOSURE_BSDF_TRANSLUCENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
sc->N = N;
ccl_fetch(sd, flag) |= bsdf_translucent_setup(sc);
}
break;
}
case CLOSURE_BSDF_TRANSPARENT_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
sc->N = N;
ccl_fetch(sd, flag) |= bsdf_transparent_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFLECTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = param1;
sc->data2 = 0.0f;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFLECTION_ID)
ccl_fetch(sd, flag) |= bsdf_reflection_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ID) {
kernel_assert(stack_valid(data_node.z));
float3 color = stack_load_float3(stack, data_node.z);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_setup(sc);
}
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_setup(sc);
}
break;
}
case CLOSURE_BSDF_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_GGX_REFRACTION_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
float eta = fmaxf(param2, 1e-5f);
eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
/* setup bsdf */
if(type == CLOSURE_BSDF_REFRACTION_ID) {
sc->data0 = eta;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_refraction_setup(sc);
}
else {
sc->data0 = param1;
sc->data1 = param1;
sc->data2 = eta;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_REFRACTION_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_refraction_setup(sc);
else
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_refraction_setup(sc);
}
}
break;
}
case CLOSURE_BSDF_SHARP_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_GGX_GLASS_ID:
case CLOSURE_BSDF_MICROFACET_BECKMANN_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective &&
!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
{
break;
}
#endif
int num_closure = ccl_fetch(sd, num_closure);
/* index of refraction */
float eta = fmaxf(param2, 1e-5f);
eta = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
/* fresnel */
float cosNO = dot(N, ccl_fetch(sd, I));
float fresnel = fresnel_dielectric_cos(cosNO, eta);
float roughness = param1;
/* reflection */
ShaderClosure *sc = ccl_fetch_array(sd, closure, num_closure);
float3 weight = sc->weight;
float sample_weight = sc->sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*fresnel);
#ifdef __CAUSTICS_TRICKS__
if(kernel_data.integrator.caustics_reflective || (path_flag & PATH_RAY_DIFFUSE) == 0)
#endif
{
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, false);
}
}
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
/* refraction */
if(num_closure + 1 < MAX_CLOSURE) {
sc = ccl_fetch_array(sd, closure, num_closure + 1);
sc->weight = weight;
sc->sample_weight = sample_weight;
sc = svm_node_closure_get_bsdf(sd, mix_weight*(1.0f - fresnel));
if(sc) {
sc->N = N;
svm_node_glass_setup(sd, sc, type, eta, roughness, true);
}
}
break;
}
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_GLASS_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && !kernel_data.integrator.caustics_refractive && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = param1;
float eta = fmaxf(param2, 1e-5f);
sc->data2 = (ccl_fetch(sd, flag) & SD_BACKFACING)? 1.0f/eta: eta;
kernel_assert(stack_valid(data_node.z));
float3 color = stack_load_float3(stack, data_node.z);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
/* setup bsdf */
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_glass_setup(sc);
}
break;
}
case CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID:
case CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID:
case CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ANISO_ID: {
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->T = stack_load_float3(stack, data_node.y);
/* rotate tangent */
float rotation = stack_load_float(stack, data_node.z);
if(rotation != 0.0f)
sc->T = rotate_around_axis(sc->T, sc->N, rotation * M_2PI_F);
/* compute roughness */
float roughness = param1;
float anisotropy = clamp(param2, -0.99f, 0.99f);
if(anisotropy < 0.0f) {
sc->data0 = roughness/(1.0f + anisotropy);
sc->data1 = roughness*(1.0f + anisotropy);
}
else {
sc->data0 = roughness*(1.0f - anisotropy);
sc->data1 = roughness/(1.0f - anisotropy);
}
sc->data2 = 0.0f;
if(type == CLOSURE_BSDF_MICROFACET_BECKMANN_ANISO_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_beckmann_aniso_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_GGX_ANISO_ID)
ccl_fetch(sd, flag) |= bsdf_microfacet_ggx_aniso_setup(sc);
else if(type == CLOSURE_BSDF_MICROFACET_MULTI_GGX_ANISO_ID) {
kernel_assert(stack_valid(data_node.w));
float3 color = stack_load_float3(stack, data_node.w);
sc->custom1 = color.x;
sc->custom2 = color.y;
sc->custom3 = color.z;
ccl_fetch(sd, flag) |= bsdf_microfacet_multi_ggx_aniso_setup(sc);
}
else
ccl_fetch(sd, flag) |= bsdf_ashikhmin_shirley_aniso_setup(sc);
}
break;
}
case CLOSURE_BSDF_ASHIKHMIN_VELVET_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
/* sigma */
sc->data0 = saturate(param1);
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_ashikhmin_velvet_setup(sc);
}
break;
}
case CLOSURE_BSDF_GLOSSY_TOON_ID:
#ifdef __CAUSTICS_TRICKS__
if(!kernel_data.integrator.caustics_reflective && (path_flag & PATH_RAY_DIFFUSE))
break;
#endif
case CLOSURE_BSDF_DIFFUSE_TOON_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
/* Normal, Size and Smooth */
sc->N = N;
sc->data0 = param1;
sc->data1 = param2;
sc->data2 = 0.0f;
if(type == CLOSURE_BSDF_DIFFUSE_TOON_ID)
ccl_fetch(sd, flag) |= bsdf_diffuse_toon_setup(sc);
else
ccl_fetch(sd, flag) |= bsdf_glossy_toon_setup(sc);
}
break;
}
#ifdef __HAIR__
case CLOSURE_BSDF_HAIR_REFLECTION_ID:
case CLOSURE_BSDF_HAIR_TRANSMISSION_ID: {
if(ccl_fetch(sd, flag) & SD_BACKFACING && ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE) {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
/* todo: giving a fixed weight here will cause issues when
* mixing multiple BSDFS. energy will not be conserved and
* the throughput can blow up after multiple bounces. we
* better figure out a way to skip backfaces from rays
* spawned by transmission from the front */
sc->weight = make_float3(1.0f, 1.0f, 1.0f);
sc->N = N;
sc->data0 = 0.0f;
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= bsdf_transparent_setup(sc);
}
}
else {
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
sc = svm_node_closure_get_bsdf(sd, mix_weight);
if(sc) {
sc->N = N;
sc->data0 = param1;
sc->data1 = param2;
sc->data2 = -stack_load_float(stack, data_node.z);
if(stack_valid(data_node.y)) {
sc->T = normalize(stack_load_float3(stack, data_node.y));
}
else if(!(ccl_fetch(sd, type) & PRIMITIVE_ALL_CURVE)) {
sc->T = normalize(ccl_fetch(sd, dPdv));
sc->data2 = 0.0f;
}
else
sc->T = normalize(ccl_fetch(sd, dPdu));
if(type == CLOSURE_BSDF_HAIR_REFLECTION_ID) {
ccl_fetch(sd, flag) |= bsdf_hair_reflection_setup(sc);
}
else {
ccl_fetch(sd, flag) |= bsdf_hair_transmission_setup(sc);
}
}
}
break;
}
#endif
#ifdef __SUBSURFACE__
# ifndef __SPLIT_KERNEL__
# define sc_next(sc) sc++
# else
# define sc_next(sc) sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure))
# endif
case CLOSURE_BSSRDF_CUBIC_ID:
case CLOSURE_BSSRDF_GAUSSIAN_ID:
case CLOSURE_BSSRDF_BURLEY_ID: {
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
float3 albedo = sc->weight;
float3 weight = sc->weight * mix_weight;
float sample_weight = fabsf(average(weight));
/* disable in case of diffuse ancestor, can't see it well then and
* adds considerably noise due to probabilities of continuing path
* getting lower and lower */
if(path_flag & PATH_RAY_DIFFUSE_ANCESTOR)
param1 = 0.0f;
if(sample_weight > CLOSURE_WEIGHT_CUTOFF && ccl_fetch(sd, num_closure)+2 < MAX_CLOSURE) {
/* radius * scale */
float3 radius = stack_load_float3(stack, data_node.z)*param1;
/* sharpness */
float sharpness = stack_load_float(stack, data_node.w);
/* texture color blur */
float texture_blur = param2;
/* create one closure per color channel */
if(fabsf(weight.x) > 0.0f) {
sc->weight = make_float3(weight.x, 0.0f, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.x;
sc->data1 = texture_blur;
sc->data2 = albedo.x;
sc->T.x = sharpness;
# ifdef __OSL__
sc->prim = NULL;
# endif
sc->N = N;
ccl_fetch(sd, flag) |= bssrdf_setup(sc, (ClosureType)type);
ccl_fetch(sd, num_closure)++;
sc_next(sc);
}
if(fabsf(weight.y) > 0.0f) {
sc->weight = make_float3(0.0f, weight.y, 0.0f);
sc->sample_weight = sample_weight;
sc->data0 = radius.y;
sc->data1 = texture_blur;
sc->data2 = albedo.y;
sc->T.x = sharpness;
# ifdef __OSL__
sc->prim = NULL;
# endif
sc->N = N;
ccl_fetch(sd, flag) |= bssrdf_setup(sc, (ClosureType)type);
ccl_fetch(sd, num_closure)++;
sc_next(sc);
}
if(fabsf(weight.z) > 0.0f) {
sc->weight = make_float3(0.0f, 0.0f, weight.z);
sc->sample_weight = sample_weight;
sc->data0 = radius.z;
sc->data1 = texture_blur;
sc->data2 = albedo.z;
sc->T.x = sharpness;
# ifdef __OSL__
sc->prim = NULL;
# endif
sc->N = N;
ccl_fetch(sd, flag) |= bssrdf_setup(sc, (ClosureType)type);
ccl_fetch(sd, num_closure)++;
sc_next(sc);
}
}
break;
}
# undef sc_next
#endif
default:
break;
}
}
ccl_device void svm_node_closure_volume(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node, int path_flag)
{
#ifdef __VOLUME__
uint type, param1_offset, param2_offset;
uint mix_weight_offset;
decode_node_uchar4(node.y, &type, &param1_offset, &param2_offset, &mix_weight_offset);
float mix_weight = (stack_valid(mix_weight_offset)? stack_load_float(stack, mix_weight_offset): 1.0f);
if(mix_weight == 0.0f)
return;
float param1 = (stack_valid(param1_offset))? stack_load_float(stack, param1_offset): __uint_as_float(node.z);
float param2 = (stack_valid(param2_offset))? stack_load_float(stack, param2_offset): __uint_as_float(node.w);
float density = fmaxf(param1, 0.0f);
switch(type) {
case CLOSURE_VOLUME_ABSORPTION_ID: {
ShaderClosure *sc = svm_node_closure_get_absorption(sd, mix_weight * density);
if(sc) {
ccl_fetch(sd, flag) |= volume_absorption_setup(sc);
}
break;
}
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID: {
ShaderClosure *sc = svm_node_closure_get_bsdf(sd, mix_weight * density);
if(sc) {
sc->data0 = param2; /* g */
sc->data1 = 0.0f;
sc->data2 = 0.0f;
ccl_fetch(sd, flag) |= volume_henyey_greenstein_setup(sc);
}
break;
}
default:
break;
}
#endif
}
ccl_device void svm_node_closure_emission(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_EMISSION_ID, 1.0f);
ccl_fetch(sd, flag) |= SD_EMISSION;
}
ccl_device void svm_node_closure_background(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_BACKGROUND_ID, 1.0f);
}
ccl_device void svm_node_closure_holdout(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_HOLDOUT_ID, 1.0f);
ccl_fetch(sd, flag) |= SD_HOLDOUT;
}
ccl_device void svm_node_closure_ambient_occlusion(ShaderData *sd, float *stack, uint4 node)
{
uint mix_weight_offset = node.y;
if(stack_valid(mix_weight_offset)) {
float mix_weight = stack_load_float(stack, mix_weight_offset);
if(mix_weight == 0.0f)
return;
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, mix_weight);
}
else
svm_node_closure_get_non_bsdf(sd, CLOSURE_AMBIENT_OCCLUSION_ID, 1.0f);
ccl_fetch(sd, flag) |= SD_AO;
}
/* Closure Nodes */
ccl_device_inline void svm_node_closure_store_weight(ShaderData *sd, float3 weight)
{
if(ccl_fetch(sd, num_closure) < MAX_CLOSURE) {
ShaderClosure *sc = ccl_fetch_array(sd, closure, ccl_fetch(sd, num_closure));
sc->weight = weight;
}
}
ccl_device void svm_node_closure_set_weight(ShaderData *sd, uint r, uint g, uint b)
{
float3 weight = make_float3(__uint_as_float(r), __uint_as_float(g), __uint_as_float(b));
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_closure_weight(ShaderData *sd, float *stack, uint weight_offset)
{
float3 weight = stack_load_float3(stack, weight_offset);
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_emission_weight(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset = node.y;
uint strength_offset = node.z;
float strength = stack_load_float(stack, strength_offset);
float3 weight = stack_load_float3(stack, color_offset)*strength;
svm_node_closure_store_weight(sd, weight);
}
ccl_device void svm_node_mix_closure(ShaderData *sd, float *stack, uint4 node)
{
/* fetch weight from blend input, previous mix closures,
* and write to stack to be used by closure nodes later */
uint weight_offset, in_weight_offset, weight1_offset, weight2_offset;
decode_node_uchar4(node.y, &weight_offset, &in_weight_offset, &weight1_offset, &weight2_offset);
float weight = stack_load_float(stack, weight_offset);
weight = saturate(weight);
float in_weight = (stack_valid(in_weight_offset))? stack_load_float(stack, in_weight_offset): 1.0f;
if(stack_valid(weight1_offset))
stack_store_float(stack, weight1_offset, in_weight*(1.0f - weight));
if(stack_valid(weight2_offset))
stack_store_float(stack, weight2_offset, in_weight*weight);
}
/* (Bump) normal */
ccl_device void svm_node_set_normal(KernelGlobals *kg, ShaderData *sd, float *stack, uint in_direction, uint out_normal)
{
float3 normal = stack_load_float3(stack, in_direction);
ccl_fetch(sd, N) = normal;
stack_store_float3(stack, out_normal, normal);
}
CCL_NAMESPACE_END