blender/extern/libmv/libmv-capi.cc
Sergey Sharybin ed2ddc9f70 Support multiple distortion models, including a new division model
This commit makes it so CameraIntrinsics is no longer hardcoded
to use the traditional polynomial radial distortion model. Currently
the distortion code has generic logic which is shared between
different distortion models, but had no other models until now.

This moves everything specific to the polynomial radial distortion
to a subclass PolynomialDistortionCameraIntrinsics(), and adds a
new division distortion model suitable for cameras such as the
GoPro which have much stronger distortion due to their fisheye lens.

This also cleans up the internal API of CameraIntrinsics to make
it easier to understand and reduces old C-style code.

New distortion model is available in the Lens panel of MCE.

- Polynomial is the old well-known model
- Division is the new one which s intended to deal better with huge
  distortion.

Coefficients of this model works independent from each other
and for division model one probably want to have positive values
to have a barrel distortion.
2014-04-17 17:28:41 +06:00

1186 lines
36 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2011 Blender Foundation.
* All rights reserved.
*
* Contributor(s): Blender Foundation,
* Sergey Sharybin
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifdef WITH_LIBMV
/* define this to generate PNG images with content of search areas
tracking between which failed */
#undef DUMP_FAILURE
/* define this to generate PNG images with content of search areas
on every itteration of tracking */
#undef DUMP_ALWAYS
#include "libmv-capi.h"
#include "libmv-util.h"
#include <cassert>
#include "libmv-capi_intern.h"
#include "libmv/logging/logging.h"
#include "libmv/multiview/homography.h"
#include "libmv/tracking/track_region.h"
#include "libmv/simple_pipeline/callbacks.h"
#include "libmv/simple_pipeline/tracks.h"
#include "libmv/simple_pipeline/initialize_reconstruction.h"
#include "libmv/simple_pipeline/bundle.h"
#include "libmv/simple_pipeline/detect.h"
#include "libmv/simple_pipeline/pipeline.h"
#include "libmv/simple_pipeline/camera_intrinsics.h"
#include "libmv/simple_pipeline/modal_solver.h"
#include "libmv/simple_pipeline/reconstruction_scale.h"
#include "libmv/simple_pipeline/keyframe_selection.h"
#ifdef _MSC_VER
# define snprintf _snprintf
#endif
using libmv::CameraIntrinsics;
using libmv::DetectOptions;
using libmv::DivisionCameraIntrinsics;
using libmv::EuclideanCamera;
using libmv::EuclideanPoint;
using libmv::EuclideanReconstruction;
using libmv::EuclideanScaleToUnity;
using libmv::Feature;
using libmv::FloatImage;
using libmv::Marker;
using libmv::PolynomialCameraIntrinsics;
using libmv::ProgressUpdateCallback;
using libmv::Tracks;
using libmv::TrackRegionOptions;
using libmv::TrackRegionResult;
using libmv::Detect;
using libmv::EuclideanBundle;
using libmv::EuclideanCompleteReconstruction;
using libmv::EuclideanReconstructTwoFrames;
using libmv::EuclideanReprojectionError;
using libmv::TrackRegion;
using libmv::SamplePlanarPatch;
typedef struct libmv_Tracks libmv_Tracks;
typedef struct libmv_Reconstruction libmv_Reconstruction;
typedef struct libmv_Features libmv_Features;
typedef struct libmv_CameraIntrinsics libmv_CameraIntrinsics;
struct libmv_Reconstruction {
EuclideanReconstruction reconstruction;
/* used for per-track average error calculation after reconstruction */
Tracks tracks;
CameraIntrinsics *intrinsics;
double error;
};
struct libmv_Features {
int count;
Feature *features;
};
/* ************ Logging ************ */
void libmv_initLogging(const char *argv0)
{
/* Make it so FATAL messages are always print into console */
char severity_fatal[32];
snprintf(severity_fatal, sizeof(severity_fatal), "%d",
google::GLOG_FATAL);
google::InitGoogleLogging(argv0);
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "0");
google::SetCommandLineOption("stderrthreshold", severity_fatal);
google::SetCommandLineOption("minloglevel", severity_fatal);
}
void libmv_startDebugLogging(void)
{
google::SetCommandLineOption("logtostderr", "1");
google::SetCommandLineOption("v", "2");
google::SetCommandLineOption("stderrthreshold", "1");
google::SetCommandLineOption("minloglevel", "0");
}
void libmv_setLoggingVerbosity(int verbosity)
{
char val[10];
snprintf(val, sizeof(val), "%d", verbosity);
google::SetCommandLineOption("v", val);
}
/* ************ Planar tracker ************ */
/* TrackRegion */
int libmv_trackRegion(const libmv_TrackRegionOptions *options,
const float *image1, int image1_width, int image1_height,
const float *image2, int image2_width, int image2_height,
const double *x1, const double *y1,
libmv_TrackRegionResult *result,
double *x2, double *y2)
{
double xx1[5], yy1[5];
double xx2[5], yy2[5];
bool tracking_result = false;
/* Convert to doubles for the libmv api. The four corners and the center. */
for (int i = 0; i < 5; ++i) {
xx1[i] = x1[i];
yy1[i] = y1[i];
xx2[i] = x2[i];
yy2[i] = y2[i];
}
TrackRegionOptions track_region_options;
FloatImage image1_mask;
switch (options->motion_model) {
#define LIBMV_CONVERT(the_model) \
case TrackRegionOptions::the_model: \
track_region_options.mode = TrackRegionOptions::the_model; \
break;
LIBMV_CONVERT(TRANSLATION)
LIBMV_CONVERT(TRANSLATION_ROTATION)
LIBMV_CONVERT(TRANSLATION_SCALE)
LIBMV_CONVERT(TRANSLATION_ROTATION_SCALE)
LIBMV_CONVERT(AFFINE)
LIBMV_CONVERT(HOMOGRAPHY)
#undef LIBMV_CONVERT
}
track_region_options.minimum_correlation = options->minimum_correlation;
track_region_options.max_iterations = options->num_iterations;
track_region_options.sigma = options->sigma;
track_region_options.num_extra_points = 1;
track_region_options.image1_mask = NULL;
track_region_options.use_brute_initialization = options->use_brute;
/* TODO(keir): This will make some cases better, but may be a regression until
* the motion model is in. Since this is on trunk, enable it for now.
*
* TODO(sergey): This gives much worse results on mango footage (see 04_2e)
* so disabling for now for until proper prediction model is landed.
*
* The thing is, currently blender sends input coordinates as the guess to
* region tracker and in case of fast motion such an early out ruins the track.
*/
track_region_options.attempt_refine_before_brute = false;
track_region_options.use_normalized_intensities = options->use_normalization;
if (options->image1_mask) {
libmv_floatBufferToImage(options->image1_mask,
image1_width, image1_height, 1,
&image1_mask);
track_region_options.image1_mask = &image1_mask;
}
/* Convert from raw float buffers to libmv's FloatImage. */
FloatImage old_patch, new_patch;
libmv_floatBufferToImage(image1,
image1_width, image1_height, 1,
&old_patch);
libmv_floatBufferToImage(image2,
image2_width, image2_height, 1,
&new_patch);
TrackRegionResult track_region_result;
TrackRegion(old_patch, new_patch,
xx1, yy1,
track_region_options,
xx2, yy2,
&track_region_result);
/* Convert to floats for the blender api. */
for (int i = 0; i < 5; ++i) {
x2[i] = xx2[i];
y2[i] = yy2[i];
}
/* TODO(keir): Update the termination string with failure details. */
if (track_region_result.termination == TrackRegionResult::CONVERGENCE ||
track_region_result.termination == TrackRegionResult::NO_CONVERGENCE)
{
tracking_result = true;
}
/* Debug dump of patches. */
#if defined(DUMP_FAILURE) || defined(DUMP_ALWAYS)
{
bool need_dump = !tracking_result;
# ifdef DUMP_ALWAYS
need_dump = true;
# endif
if (need_dump) {
libmv_saveImage(old_patch, "old_patch", x1[4], y1[4]);
libmv_saveImage(new_patch, "new_patch", x2[4], y2[4]);
if (options->image1_mask) {
libmv_saveImage(image1_mask, "mask", x2[4], y2[4]);
}
}
}
#endif
return tracking_result;
}
void libmv_samplePlanarPatch(const float *image,
int width, int height, int channels,
const double *xs, const double *ys,
int num_samples_x, int num_samples_y,
const float *mask,
float *patch,
double *warped_position_x,
double *warped_position_y)
{
FloatImage libmv_image, libmv_patch, libmv_mask;
FloatImage *libmv_mask_for_sample = NULL;
libmv_floatBufferToImage(image, width, height, channels, &libmv_image);
if (mask) {
libmv_floatBufferToImage(mask, width, height, 1, &libmv_mask);
libmv_mask_for_sample = &libmv_mask;
}
SamplePlanarPatch(libmv_image,
xs, ys,
num_samples_x, num_samples_y,
libmv_mask_for_sample,
&libmv_patch,
warped_position_x,
warped_position_y);
libmv_imageToFloatBuffer(libmv_patch, patch);
}
void libmv_samplePlanarPatchByte(const unsigned char *image,
int width, int height, int channels,
const double *xs, const double *ys,
int num_samples_x, int num_samples_y,
const float *mask,
unsigned char *patch,
double *warped_position_x, double *warped_position_y)
{
libmv::FloatImage libmv_image, libmv_patch, libmv_mask;
libmv::FloatImage *libmv_mask_for_sample = NULL;
libmv_byteBufferToImage(image, width, height, channels, &libmv_image);
if (mask) {
libmv_floatBufferToImage(mask, width, height, 1, &libmv_mask);
libmv_mask_for_sample = &libmv_mask;
}
libmv::SamplePlanarPatch(libmv_image, xs, ys,
num_samples_x, num_samples_y,
libmv_mask_for_sample,
&libmv_patch,
warped_position_x,
warped_position_y);
libmv_imageToByteBuffer(libmv_patch, patch);
}
/* ************ Tracks ************ */
libmv_Tracks *libmv_tracksNew(void)
{
Tracks *libmv_tracks = LIBMV_OBJECT_NEW(Tracks);
return (libmv_Tracks *) libmv_tracks;
}
void libmv_tracksDestroy(libmv_Tracks *libmv_tracks)
{
LIBMV_OBJECT_DELETE(libmv_tracks, Tracks);
}
void libmv_tracksInsert(libmv_Tracks *libmv_tracks,
int image, int track,
double x, double y,
double weight)
{
((Tracks *) libmv_tracks)->Insert(image, track, x, y, weight);
}
/* ************ Reconstruction ************ */
namespace {
class ReconstructUpdateCallback : public ProgressUpdateCallback {
public:
ReconstructUpdateCallback(
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
progress_update_callback_ = progress_update_callback;
callback_customdata_ = callback_customdata;
}
void invoke(double progress, const char *message)
{
if (progress_update_callback_) {
progress_update_callback_(callback_customdata_, progress, message);
}
}
protected:
reconstruct_progress_update_cb progress_update_callback_;
void *callback_customdata_;
};
void libmv_solveRefineIntrinsics(
const Tracks &tracks,
const int refine_intrinsics,
const int bundle_constraints,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata,
EuclideanReconstruction *reconstruction,
CameraIntrinsics *intrinsics)
{
/* only a few combinations are supported but trust the caller */
int bundle_intrinsics = 0;
if (refine_intrinsics & LIBMV_REFINE_FOCAL_LENGTH) {
bundle_intrinsics |= libmv::BUNDLE_FOCAL_LENGTH;
}
if (refine_intrinsics & LIBMV_REFINE_PRINCIPAL_POINT) {
bundle_intrinsics |= libmv::BUNDLE_PRINCIPAL_POINT;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K1) {
bundle_intrinsics |= libmv::BUNDLE_RADIAL_K1;
}
if (refine_intrinsics & LIBMV_REFINE_RADIAL_DISTORTION_K2) {
bundle_intrinsics |= libmv::BUNDLE_RADIAL_K2;
}
progress_update_callback(callback_customdata, 1.0, "Refining solution");
EuclideanBundleCommonIntrinsics(tracks,
bundle_intrinsics,
bundle_constraints,
reconstruction,
intrinsics);
}
void finishReconstruction(
const Tracks &tracks,
const CameraIntrinsics &camera_intrinsics,
libmv_Reconstruction *libmv_reconstruction,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
EuclideanReconstruction &reconstruction =
libmv_reconstruction->reconstruction;
/* reprojection error calculation */
progress_update_callback(callback_customdata, 1.0, "Finishing solution");
libmv_reconstruction->tracks = tracks;
libmv_reconstruction->error = EuclideanReprojectionError(tracks,
reconstruction,
camera_intrinsics);
}
bool selectTwoKeyframesBasedOnGRICAndVariance(
Tracks &tracks,
Tracks &normalized_tracks,
CameraIntrinsics &camera_intrinsics,
int &keyframe1,
int &keyframe2)
{
libmv::vector<int> keyframes;
/* Get list of all keyframe candidates first. */
SelectKeyframesBasedOnGRICAndVariance(normalized_tracks,
camera_intrinsics,
keyframes);
if (keyframes.size() < 2) {
LG << "Not enough keyframes detected by GRIC";
return false;
}
else if (keyframes.size() == 2) {
keyframe1 = keyframes[0];
keyframe2 = keyframes[1];
return true;
}
/* Now choose two keyframes with minimal reprojection error after initial
* reconstruction choose keyframes with the least reprojection error after
* solving from two candidate keyframes.
*
* In fact, currently libmv returns single pair only, so this code will
* not actually run. But in the future this could change, so let's stay
* prepared.
*/
int previous_keyframe = keyframes[0];
double best_error = std::numeric_limits<double>::max();
for (int i = 1; i < keyframes.size(); i++) {
EuclideanReconstruction reconstruction;
int current_keyframe = keyframes[i];
libmv::vector<Marker> keyframe_markers =
normalized_tracks.MarkersForTracksInBothImages(previous_keyframe,
current_keyframe);
Tracks keyframe_tracks(keyframe_markers);
/* get a solution from two keyframes only */
EuclideanReconstructTwoFrames(keyframe_markers, &reconstruction);
EuclideanBundle(keyframe_tracks, &reconstruction);
EuclideanCompleteReconstruction(keyframe_tracks,
&reconstruction,
NULL);
double current_error = EuclideanReprojectionError(tracks,
reconstruction,
camera_intrinsics);
LG << "Error between " << previous_keyframe
<< " and " << current_keyframe
<< ": " << current_error;
if (current_error < best_error) {
best_error = current_error;
keyframe1 = previous_keyframe;
keyframe2 = current_keyframe;
}
previous_keyframe = current_keyframe;
}
return true;
}
} // namespace
libmv_Reconstruction *libmv_solveReconstruction(
const libmv_Tracks *libmv_tracks,
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
libmv_ReconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv_Reconstruction *libmv_reconstruction =
LIBMV_OBJECT_NEW(libmv_Reconstruction);
Tracks &tracks = *((Tracks *) libmv_tracks);
EuclideanReconstruction &reconstruction =
libmv_reconstruction->reconstruction;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback,
callback_customdata);
/* Retrieve reconstruction options from C-API to libmv API */
CameraIntrinsics *camera_intrinsics;
camera_intrinsics = libmv_reconstruction->intrinsics =
libmv_cameraIntrinsicsCreateFromOptions(
libmv_camera_intrinsics_options);
/* Invert the camera intrinsics */
Tracks normalized_tracks;
libmv_getNormalizedTracks(tracks, *camera_intrinsics, &normalized_tracks);
/* keyframe selection */
int keyframe1 = libmv_reconstruction_options->keyframe1,
keyframe2 = libmv_reconstruction_options->keyframe2;
if (libmv_reconstruction_options->select_keyframes) {
LG << "Using automatic keyframe selection";
update_callback.invoke(0, "Selecting keyframes");
selectTwoKeyframesBasedOnGRICAndVariance(tracks,
normalized_tracks,
*camera_intrinsics,
keyframe1,
keyframe2);
/* so keyframes in the interface would be updated */
libmv_reconstruction_options->keyframe1 = keyframe1;
libmv_reconstruction_options->keyframe2 = keyframe2;
}
/* actual reconstruction */
LG << "frames to init from: " << keyframe1 << " " << keyframe2;
libmv::vector<Marker> keyframe_markers =
normalized_tracks.MarkersForTracksInBothImages(keyframe1, keyframe2);
LG << "number of markers for init: " << keyframe_markers.size();
update_callback.invoke(0, "Initial reconstruction");
EuclideanReconstructTwoFrames(keyframe_markers, &reconstruction);
EuclideanBundle(normalized_tracks, &reconstruction);
EuclideanCompleteReconstruction(normalized_tracks,
&reconstruction,
&update_callback);
/* refinement */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics(
tracks,
libmv_reconstruction_options->refine_intrinsics,
libmv::BUNDLE_NO_CONSTRAINTS,
progress_update_callback,
callback_customdata,
&reconstruction,
camera_intrinsics);
}
/* set reconstruction scale to unity */
EuclideanScaleToUnity(&reconstruction);
/* finish reconstruction */
finishReconstruction(tracks,
*camera_intrinsics,
libmv_reconstruction,
progress_update_callback,
callback_customdata);
return (libmv_Reconstruction *) libmv_reconstruction;
}
libmv_Reconstruction *libmv_solveModal(
const libmv_Tracks *libmv_tracks,
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
const libmv_ReconstructionOptions *libmv_reconstruction_options,
reconstruct_progress_update_cb progress_update_callback,
void *callback_customdata)
{
libmv_Reconstruction *libmv_reconstruction =
LIBMV_OBJECT_NEW(libmv_Reconstruction);
Tracks &tracks = *((Tracks *) libmv_tracks);
EuclideanReconstruction &reconstruction =
libmv_reconstruction->reconstruction;
ReconstructUpdateCallback update_callback =
ReconstructUpdateCallback(progress_update_callback,
callback_customdata);
/* Retrieve reconstruction options from C-API to libmv API */
CameraIntrinsics *camera_intrinsics;
camera_intrinsics = libmv_reconstruction->intrinsics =
libmv_cameraIntrinsicsCreateFromOptions(
libmv_camera_intrinsics_options);
/* Invert the camera intrinsics. */
Tracks normalized_tracks;
libmv_getNormalizedTracks(tracks, *camera_intrinsics, &normalized_tracks);
/* Actual reconstruction. */
ModalSolver(normalized_tracks, &reconstruction, &update_callback);
PolynomialCameraIntrinsics empty_intrinsics;
EuclideanBundleCommonIntrinsics(normalized_tracks,
libmv::BUNDLE_NO_INTRINSICS,
libmv::BUNDLE_NO_TRANSLATION,
&reconstruction,
&empty_intrinsics);
/* Refinement. */
if (libmv_reconstruction_options->refine_intrinsics) {
libmv_solveRefineIntrinsics(
tracks,
libmv_reconstruction_options->refine_intrinsics,
libmv::BUNDLE_NO_TRANSLATION,
progress_update_callback, callback_customdata,
&reconstruction,
camera_intrinsics);
}
/* Finish reconstruction. */
finishReconstruction(tracks,
*camera_intrinsics,
libmv_reconstruction,
progress_update_callback,
callback_customdata);
return (libmv_Reconstruction *) libmv_reconstruction;
}
void libmv_reconstructionDestroy(libmv_Reconstruction *libmv_reconstruction)
{
LIBMV_OBJECT_DELETE(libmv_reconstruction->intrinsics, CameraIntrinsics);
LIBMV_OBJECT_DELETE(libmv_reconstruction, libmv_Reconstruction);
}
int libmv_reprojectionPointForTrack(
const libmv_Reconstruction *libmv_reconstruction,
int track,
double pos[3])
{
const EuclideanReconstruction *reconstruction =
&libmv_reconstruction->reconstruction;
const EuclideanPoint *point =
reconstruction->PointForTrack(track);
if (point) {
pos[0] = point->X[0];
pos[1] = point->X[2];
pos[2] = point->X[1];
return 1;
}
return 0;
}
double libmv_reprojectionErrorForTrack(
const libmv_Reconstruction *libmv_reconstruction,
int track)
{
const EuclideanReconstruction *reconstruction =
&libmv_reconstruction->reconstruction;
const CameraIntrinsics *intrinsics = libmv_reconstruction->intrinsics;
libmv::vector<Marker> markers =
libmv_reconstruction->tracks.MarkersForTrack(track);
int num_reprojected = 0;
double total_error = 0.0;
for (int i = 0; i < markers.size(); ++i) {
double weight = markers[i].weight;
const EuclideanCamera *camera =
reconstruction->CameraForImage(markers[i].image);
const EuclideanPoint *point =
reconstruction->PointForTrack(markers[i].track);
if (!camera || !point || weight == 0.0) {
continue;
}
num_reprojected++;
Marker reprojected_marker =
libmv_projectMarker(*point, *camera, *intrinsics);
double ex = (reprojected_marker.x - markers[i].x) * weight;
double ey = (reprojected_marker.y - markers[i].y) * weight;
total_error += sqrt(ex * ex + ey * ey);
}
return total_error / num_reprojected;
}
double libmv_reprojectionErrorForImage(
const libmv_Reconstruction *libmv_reconstruction,
int image)
{
const EuclideanReconstruction *reconstruction =
&libmv_reconstruction->reconstruction;
const CameraIntrinsics *intrinsics = libmv_reconstruction->intrinsics;
libmv::vector<Marker> markers =
libmv_reconstruction->tracks.MarkersInImage(image);
const EuclideanCamera *camera = reconstruction->CameraForImage(image);
int num_reprojected = 0;
double total_error = 0.0;
if (!camera) {
return 0.0;
}
for (int i = 0; i < markers.size(); ++i) {
const EuclideanPoint *point =
reconstruction->PointForTrack(markers[i].track);
if (!point) {
continue;
}
num_reprojected++;
Marker reprojected_marker =
libmv_projectMarker(*point, *camera, *intrinsics);
double ex = (reprojected_marker.x - markers[i].x) * markers[i].weight;
double ey = (reprojected_marker.y - markers[i].y) * markers[i].weight;
total_error += sqrt(ex * ex + ey * ey);
}
return total_error / num_reprojected;
}
int libmv_reprojectionCameraForImage(
const libmv_Reconstruction *libmv_reconstruction,
int image, double mat[4][4])
{
const EuclideanReconstruction *reconstruction =
&libmv_reconstruction->reconstruction;
const EuclideanCamera *camera =
reconstruction->CameraForImage(image);
if (camera) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 3; ++k) {
int l = k;
if (k == 1) l = 2;
else if (k == 2) l = 1;
if (j == 2) mat[j][l] = -camera->R(j,k);
else mat[j][l] = camera->R(j,k);
}
mat[j][3] = 0.0;
}
libmv::Vec3 optical_center = -camera->R.transpose() * camera->t;
mat[3][0] = optical_center(0);
mat[3][1] = optical_center(2);
mat[3][2] = optical_center(1);
mat[3][3] = 1.0;
return 1;
}
return 0;
}
double libmv_reprojectionError(
const libmv_Reconstruction *libmv_reconstruction)
{
return libmv_reconstruction->error;
}
libmv_CameraIntrinsics *libmv_reconstructionExtractIntrinsics(
libmv_Reconstruction *libmv_reconstruction)
{
return (libmv_CameraIntrinsics *) libmv_reconstruction->intrinsics;
}
/* ************ Feature detector ************ */
static libmv_Features *libmv_featuresFromVector(
const libmv::vector<Feature> &features)
{
libmv_Features *libmv_features = LIBMV_STRUCT_NEW(libmv_Features, 1);
int count = features.size();
if (count) {
libmv_features->features = LIBMV_STRUCT_NEW(Feature, count);
for (int i = 0; i < count; i++) {
libmv_features->features[i] = features.at(i);
}
}
else {
libmv_features->features = NULL;
}
libmv_features->count = count;
return libmv_features;
}
static void libmv_convertDetectorOptions(libmv_DetectOptions *options,
DetectOptions *detector_options)
{
switch (options->detector) {
#define LIBMV_CONVERT(the_detector) \
case LIBMV_DETECTOR_ ## the_detector: \
detector_options->type = DetectOptions::the_detector; \
break;
LIBMV_CONVERT(FAST)
LIBMV_CONVERT(MORAVEC)
LIBMV_CONVERT(HARRIS)
#undef LIBMV_CONVERT
}
detector_options->margin = options->margin;
detector_options->min_distance = options->min_distance;
detector_options->fast_min_trackness = options->fast_min_trackness;
detector_options->moravec_max_count = options->moravec_max_count;
detector_options->moravec_pattern = options->moravec_pattern;
detector_options->harris_threshold = options->harris_threshold;
}
libmv_Features *libmv_detectFeaturesByte(
const unsigned char *image_buffer,
int width, int height,
int channels,
libmv_DetectOptions *options)
{
// Prepare the image.
FloatImage image;
libmv_byteBufferToImage(image_buffer, width, height, channels, &image);
// Configure detector.
DetectOptions detector_options;
libmv_convertDetectorOptions(options, &detector_options);
// Run the detector.
libmv::vector<Feature> detected_features;
Detect(image, detector_options, &detected_features);
// Convert result to C-API.
libmv_Features *result = libmv_featuresFromVector(detected_features);
return result;
}
libmv_Features *libmv_detectFeaturesFloat(const float *image_buffer,
int width, int height,
int channels,
libmv_DetectOptions *options)
{
// Prepare the image.
FloatImage image;
libmv_floatBufferToImage(image_buffer, width, height, channels, &image);
// Configure detector.
DetectOptions detector_options;
libmv_convertDetectorOptions(options, &detector_options);
// Run the detector.
libmv::vector<Feature> detected_features;
Detect(image, detector_options, &detected_features);
// Convert result to C-API.
libmv_Features *result = libmv_featuresFromVector(detected_features);
return result;
}
void libmv_featuresDestroy(libmv_Features *libmv_features)
{
if (libmv_features->features) {
LIBMV_STRUCT_DELETE(libmv_features->features);
}
LIBMV_STRUCT_DELETE(libmv_features);
}
int libmv_countFeatures(const libmv_Features *libmv_features)
{
return libmv_features->count;
}
void libmv_getFeature(const libmv_Features *libmv_features,
int number,
double *x, double *y, double *score, double *size)
{
Feature &feature = libmv_features->features[number];
*x = feature.x;
*y = feature.y;
*score = feature.score;
*size = feature.size;
}
/* ************ Camera intrinsics ************ */
libmv_CameraIntrinsics *libmv_cameraIntrinsicsNew(
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options)
{
CameraIntrinsics *camera_intrinsics =
libmv_cameraIntrinsicsCreateFromOptions(libmv_camera_intrinsics_options);
return (libmv_CameraIntrinsics *) camera_intrinsics;
}
libmv_CameraIntrinsics *libmv_cameraIntrinsicsCopy(
const libmv_CameraIntrinsics *libmvIntrinsics)
{
const CameraIntrinsics *orig_intrinsics =
(const CameraIntrinsics *) libmvIntrinsics;
CameraIntrinsics *new_intrinsics = NULL;
switch (orig_intrinsics->GetDistortionModelType()) {
case libmv::DISTORTION_MODEL_POLYNOMIAL:
{
const PolynomialCameraIntrinsics *polynomial_intrinsics =
static_cast<const PolynomialCameraIntrinsics*>(orig_intrinsics);
new_intrinsics = LIBMV_OBJECT_NEW(PolynomialCameraIntrinsics,
*polynomial_intrinsics);
break;
}
case libmv::DISTORTION_MODEL_DIVISION:
{
const DivisionCameraIntrinsics *division_intrinsics =
static_cast<const DivisionCameraIntrinsics*>(orig_intrinsics);
new_intrinsics = LIBMV_OBJECT_NEW(DivisionCameraIntrinsics,
*division_intrinsics);
break;
}
default:
assert(!"Unknown distortion model");
}
return (libmv_CameraIntrinsics *) new_intrinsics;
}
void libmv_cameraIntrinsicsDestroy(libmv_CameraIntrinsics *libmvIntrinsics)
{
LIBMV_OBJECT_DELETE(libmvIntrinsics, CameraIntrinsics);
}
void libmv_cameraIntrinsicsUpdate(
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
libmv_CameraIntrinsics *libmv_intrinsics)
{
CameraIntrinsics *camera_intrinsics = (CameraIntrinsics *) libmv_intrinsics;
double focal_length = libmv_camera_intrinsics_options->focal_length;
double principal_x = libmv_camera_intrinsics_options->principal_point_x;
double principal_y = libmv_camera_intrinsics_options->principal_point_y;
int image_width = libmv_camera_intrinsics_options->image_width;
int image_height = libmv_camera_intrinsics_options->image_height;
/* Try avoid unnecessary updates,
* so pre-computed distortion grids are not freed.
*/
if (camera_intrinsics->focal_length() != focal_length)
camera_intrinsics->SetFocalLength(focal_length, focal_length);
if (camera_intrinsics->principal_point_x() != principal_x ||
camera_intrinsics->principal_point_y() != principal_y)
{
camera_intrinsics->SetPrincipalPoint(principal_x, principal_y);
}
if (camera_intrinsics->image_width() != image_width ||
camera_intrinsics->image_height() != image_height)
{
camera_intrinsics->SetImageSize(image_width, image_height);
}
switch (libmv_camera_intrinsics_options->distortion_model) {
case LIBMV_DISTORTION_MODEL_POLYNOMIAL:
{
assert(camera_intrinsics->GetDistortionModelType() ==
libmv::DISTORTION_MODEL_POLYNOMIAL);
PolynomialCameraIntrinsics *polynomial_intrinsics =
(PolynomialCameraIntrinsics *) camera_intrinsics;
double k1 = libmv_camera_intrinsics_options->polynomial_k1;
double k2 = libmv_camera_intrinsics_options->polynomial_k2;
double k3 = libmv_camera_intrinsics_options->polynomial_k3;
if (polynomial_intrinsics->k1() != k1 ||
polynomial_intrinsics->k2() != k2 ||
polynomial_intrinsics->k3() != k3)
{
polynomial_intrinsics->SetRadialDistortion(k1, k2, k3);
}
break;
}
case LIBMV_DISTORTION_MODEL_DIVISION:
{
assert(camera_intrinsics->GetDistortionModelType() ==
libmv::DISTORTION_MODEL_DIVISION);
DivisionCameraIntrinsics *division_intrinsics =
(DivisionCameraIntrinsics *) camera_intrinsics;
double k1 = libmv_camera_intrinsics_options->division_k1;
double k2 = libmv_camera_intrinsics_options->division_k2;
if (division_intrinsics->k1() != k1 ||
division_intrinsics->k2() != k2)
{
division_intrinsics->SetDistortion(k1, k2);
}
break;
}
default:
assert(!"Unknown distortion model");
}
}
void libmv_cameraIntrinsicsSetThreads(
libmv_CameraIntrinsics *libmv_intrinsics, int threads)
{
CameraIntrinsics *camera_intrinsics = (CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->SetThreads(threads);
}
void libmv_cameraIntrinsicsExtractOptions(
const libmv_CameraIntrinsics *libmv_intrinsics,
libmv_CameraIntrinsicsOptions *camera_intrinsics_options)
{
const CameraIntrinsics *camera_intrinsics =
(const CameraIntrinsics *) libmv_intrinsics;
// Fill in options which are common for all distortion models.
camera_intrinsics_options->focal_length = camera_intrinsics->focal_length();
camera_intrinsics_options->principal_point_x =
camera_intrinsics->principal_point_x();
camera_intrinsics_options->principal_point_y =
camera_intrinsics->principal_point_y();
camera_intrinsics_options->image_width = camera_intrinsics->image_width();
camera_intrinsics_options->image_height = camera_intrinsics->image_height();
switch (camera_intrinsics->GetDistortionModelType()) {
case libmv::DISTORTION_MODEL_POLYNOMIAL:
{
const PolynomialCameraIntrinsics *polynomial_intrinsics =
static_cast<const PolynomialCameraIntrinsics *>(camera_intrinsics);
camera_intrinsics_options->distortion_model = LIBMV_DISTORTION_MODEL_POLYNOMIAL;
camera_intrinsics_options->polynomial_k1 = polynomial_intrinsics->k1();
camera_intrinsics_options->polynomial_k2 = polynomial_intrinsics->k2();
camera_intrinsics_options->polynomial_k3 = polynomial_intrinsics->k3();
camera_intrinsics_options->polynomial_p1 = polynomial_intrinsics->p1();
camera_intrinsics_options->polynomial_p1 = polynomial_intrinsics->p2();
break;
}
case libmv::DISTORTION_MODEL_DIVISION:
{
const DivisionCameraIntrinsics *division_intrinsics =
static_cast<const DivisionCameraIntrinsics *>(camera_intrinsics);
camera_intrinsics_options->distortion_model = LIBMV_DISTORTION_MODEL_DIVISION;
camera_intrinsics_options->division_k1 = division_intrinsics->k1();
camera_intrinsics_options->division_k2 = division_intrinsics->k2();
break;
}
default:
assert(!"Uknown distortion model");
}
}
void libmv_cameraIntrinsicsUndistortByte(
const libmv_CameraIntrinsics *libmv_intrinsics,
unsigned char *src, unsigned char *dst, int width, int height,
float overscan, int channels)
{
CameraIntrinsics *camera_intrinsics = (CameraIntrinsics *) libmv_intrinsics;
camera_intrinsics->UndistortBuffer(src,
width, height, overscan, channels,
dst);
}
void libmv_cameraIntrinsicsUndistortFloat(
const libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height,
float overscan, int channels)
{
CameraIntrinsics *intrinsics = (CameraIntrinsics *) libmvIntrinsics;
intrinsics->UndistortBuffer(src,
width, height, overscan, channels,
dst);
}
void libmv_cameraIntrinsicsDistortByte(
const libmv_CameraIntrinsics *libmvIntrinsics,
unsigned char *src, unsigned char *dst, int width, int height,
float overscan, int channels)
{
CameraIntrinsics *intrinsics = (CameraIntrinsics *) libmvIntrinsics;
intrinsics->DistortBuffer(src,
width, height, overscan, channels,
dst);
}
void libmv_cameraIntrinsicsDistortFloat(
const libmv_CameraIntrinsics *libmvIntrinsics,
float *src, float *dst, int width, int height,
float overscan, int channels)
{
CameraIntrinsics *intrinsics = (CameraIntrinsics *) libmvIntrinsics;
intrinsics->DistortBuffer(src,
width, height, overscan, channels,
dst);
}
void libmv_cameraIntrinsicsApply(
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
/* do a lens undistortion if focal length is non-zero only */
if (libmv_camera_intrinsics_options->focal_length) {
CameraIntrinsics *camera_intrinsics =
libmv_cameraIntrinsicsCreateFromOptions(libmv_camera_intrinsics_options);
camera_intrinsics->ApplyIntrinsics(x, y, x1, y1);
LIBMV_OBJECT_DELETE(camera_intrinsics, CameraIntrinsics);
}
}
void libmv_cameraIntrinsicsInvert(
const libmv_CameraIntrinsicsOptions *libmv_camera_intrinsics_options,
double x, double y, double *x1, double *y1)
{
/* do a lens distortion if focal length is non-zero only */
if (libmv_camera_intrinsics_options->focal_length) {
CameraIntrinsics *camera_intrinsics =
libmv_cameraIntrinsicsCreateFromOptions(libmv_camera_intrinsics_options);
camera_intrinsics->InvertIntrinsics(x, y, x1, y1);
LIBMV_OBJECT_DELETE(camera_intrinsics, CameraIntrinsics);
}
}
void libmv_homography2DFromCorrespondencesEuc(double (*x1)[2],
double (*x2)[2],
int num_points,
double H[3][3])
{
libmv::Mat x1_mat, x2_mat;
libmv::Mat3 H_mat;
x1_mat.resize(2, num_points);
x2_mat.resize(2, num_points);
for (int i = 0; i < num_points; i++) {
x1_mat.col(i) = libmv::Vec2(x1[i][0], x1[i][1]);
x2_mat.col(i) = libmv::Vec2(x2[i][0], x2[i][1]);
}
LG << "x1: " << x1_mat;
LG << "x2: " << x2_mat;
libmv::EstimateHomographyOptions options;
libmv::EstimateHomography2DFromCorrespondences(x1_mat,
x2_mat,
options,
&H_mat);
LG << "H: " << H_mat;
memcpy(H, H_mat.data(), 9 * sizeof(double));
}
#endif