blender/intern/cycles/kernel/svm/svm.h
Sergey Sharybin 0579eaae1f Cycles: Make all #include statements relative to cycles source directory
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.

For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.

Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.

This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.

Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.

Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner

Reviewed By: lukasstockner97, maiself, nirved, dingto

Subscribers: brecht

Differential Revision: https://developer.blender.org/D2586
2017-03-29 13:41:11 +02:00

480 lines
14 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __SVM_H__
#define __SVM_H__
/* Shader Virtual Machine
*
* A shader is a list of nodes to be executed. These are simply read one after
* the other and executed, using an node counter. Each node and it's associated
* data is encoded as one or more uint4's in a 1D texture. If the data is larger
* than an uint4, the node can increase the node counter to compensate for this.
* Floats are encoded as int and then converted to float again.
*
* Nodes write their output into a stack. All stack data in the stack is
* floats, since it's all factors, colors and vectors. The stack will be stored
* in local memory on the GPU, as it would take too many register and indexes in
* ways not known at compile time. This seems the only solution even though it
* may be slow, with two positive factors. If the same shader is being executed,
* memory access will be coalesced, and on fermi cards, memory will actually be
* cached.
*
* The result of shader execution will be a single closure. This means the
* closure type, associated label, data and weight. Sampling from multiple
* closures is supported through the mix closure node, the logic for that is
* mostly taken care of in the SVM compiler.
*/
#include "kernel/svm/svm_types.h"
CCL_NAMESPACE_BEGIN
/* Stack */
ccl_device_inline float3 stack_load_float3(float *stack, uint a)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
return make_float3(stack[a+0], stack[a+1], stack[a+2]);
}
ccl_device_inline void stack_store_float3(float *stack, uint a, float3 f)
{
kernel_assert(a+2 < SVM_STACK_SIZE);
stack[a+0] = f.x;
stack[a+1] = f.y;
stack[a+2] = f.z;
}
ccl_device_inline float stack_load_float(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return stack[a];
}
ccl_device_inline float stack_load_float_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? __uint_as_float(value): stack_load_float(stack, a);
}
ccl_device_inline void stack_store_float(float *stack, uint a, float f)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = f;
}
ccl_device_inline int stack_load_int(float *stack, uint a)
{
kernel_assert(a < SVM_STACK_SIZE);
return __float_as_int(stack[a]);
}
ccl_device_inline int stack_load_int_default(float *stack, uint a, uint value)
{
return (a == (uint)SVM_STACK_INVALID)? (int)value: stack_load_int(stack, a);
}
ccl_device_inline void stack_store_int(float *stack, uint a, int i)
{
kernel_assert(a < SVM_STACK_SIZE);
stack[a] = __int_as_float(i);
}
ccl_device_inline bool stack_valid(uint a)
{
return a != (uint)SVM_STACK_INVALID;
}
/* Reading Nodes */
ccl_device_inline uint4 read_node(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
(*offset)++;
return node;
}
ccl_device_inline float4 read_node_float(KernelGlobals *kg, int *offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, *offset);
float4 f = make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
(*offset)++;
return f;
}
ccl_device_inline float4 fetch_node_float(KernelGlobals *kg, int offset)
{
uint4 node = kernel_tex_fetch(__svm_nodes, offset);
return make_float4(__uint_as_float(node.x), __uint_as_float(node.y), __uint_as_float(node.z), __uint_as_float(node.w));
}
ccl_device_inline void decode_node_uchar4(uint i, uint *x, uint *y, uint *z, uint *w)
{
if(x) *x = (i & 0xFF);
if(y) *y = ((i >> 8) & 0xFF);
if(z) *z = ((i >> 16) & 0xFF);
if(w) *w = ((i >> 24) & 0xFF);
}
CCL_NAMESPACE_END
/* Nodes */
#include "kernel/svm/svm_noise.h"
#include "svm_texture.h"
#include "kernel/svm/svm_color_util.h"
#include "kernel/svm/svm_math_util.h"
#include "kernel/svm/svm_attribute.h"
#include "kernel/svm/svm_gradient.h"
#include "kernel/svm/svm_blackbody.h"
#include "kernel/svm/svm_closure.h"
#include "kernel/svm/svm_noisetex.h"
#include "kernel/svm/svm_convert.h"
#include "kernel/svm/svm_displace.h"
#include "kernel/svm/svm_fresnel.h"
#include "kernel/svm/svm_wireframe.h"
#include "kernel/svm/svm_wavelength.h"
#include "kernel/svm/svm_camera.h"
#include "kernel/svm/svm_geometry.h"
#include "kernel/svm/svm_hsv.h"
#include "kernel/svm/svm_image.h"
#include "kernel/svm/svm_gamma.h"
#include "kernel/svm/svm_brightness.h"
#include "kernel/svm/svm_invert.h"
#include "kernel/svm/svm_light_path.h"
#include "kernel/svm/svm_magic.h"
#include "kernel/svm/svm_mapping.h"
#include "kernel/svm/svm_normal.h"
#include "kernel/svm/svm_wave.h"
#include "kernel/svm/svm_math.h"
#include "kernel/svm/svm_mix.h"
#include "kernel/svm/svm_ramp.h"
#include "kernel/svm/svm_sepcomb_hsv.h"
#include "kernel/svm/svm_sepcomb_vector.h"
#include "kernel/svm/svm_musgrave.h"
#include "kernel/svm/svm_sky.h"
#include "kernel/svm/svm_tex_coord.h"
#include "kernel/svm/svm_value.h"
#include "kernel/svm/svm_voronoi.h"
#include "kernel/svm/svm_checker.h"
#include "kernel/svm/svm_brick.h"
#include "kernel/svm/svm_vector_transform.h"
#include "kernel/svm/svm_voxel.h"
#include "kernel/svm/svm_bump.h"
CCL_NAMESPACE_BEGIN
#define NODES_GROUP(group) ((group) <= __NODES_MAX_GROUP__)
#define NODES_FEATURE(feature) ((__NODES_FEATURES__ & (feature)) != 0)
/* Main Interpreter Loop */
ccl_device_noinline void svm_eval_nodes(KernelGlobals *kg, ShaderData *sd, ccl_addr_space PathState *state, ShaderType type, int path_flag)
{
float stack[SVM_STACK_SIZE];
int offset = sd->shader & SHADER_MASK;
while(1) {
uint4 node = read_node(kg, &offset);
switch(node.x) {
#if NODES_GROUP(NODE_GROUP_LEVEL_0)
case NODE_SHADER_JUMP: {
if(type == SHADER_TYPE_SURFACE) offset = node.y;
else if(type == SHADER_TYPE_VOLUME) offset = node.z;
else if(type == SHADER_TYPE_DISPLACEMENT) offset = node.w;
else return;
break;
}
case NODE_CLOSURE_BSDF:
svm_node_closure_bsdf(kg, sd, stack, node, path_flag, &offset);
break;
case NODE_CLOSURE_EMISSION:
svm_node_closure_emission(sd, stack, node);
break;
case NODE_CLOSURE_BACKGROUND:
svm_node_closure_background(sd, stack, node);
break;
case NODE_CLOSURE_SET_WEIGHT:
svm_node_closure_set_weight(sd, node.y, node.z, node.w);
break;
case NODE_CLOSURE_WEIGHT:
svm_node_closure_weight(sd, stack, node.y);
break;
case NODE_EMISSION_WEIGHT:
svm_node_emission_weight(kg, sd, stack, node);
break;
case NODE_MIX_CLOSURE:
svm_node_mix_closure(sd, stack, node);
break;
case NODE_JUMP_IF_ZERO:
if(stack_load_float(stack, node.z) == 0.0f)
offset += node.y;
break;
case NODE_JUMP_IF_ONE:
if(stack_load_float(stack, node.z) == 1.0f)
offset += node.y;
break;
case NODE_GEOMETRY:
svm_node_geometry(kg, sd, stack, node.y, node.z);
break;
case NODE_CONVERT:
svm_node_convert(sd, stack, node.y, node.z, node.w);
break;
case NODE_TEX_COORD:
svm_node_tex_coord(kg, sd, path_flag, stack, node, &offset);
break;
case NODE_VALUE_F:
svm_node_value_f(kg, sd, stack, node.y, node.z);
break;
case NODE_VALUE_V:
svm_node_value_v(kg, sd, stack, node.y, &offset);
break;
case NODE_ATTR:
svm_node_attr(kg, sd, stack, node);
break;
# if NODES_FEATURE(NODE_FEATURE_BUMP)
case NODE_GEOMETRY_BUMP_DX:
svm_node_geometry_bump_dx(kg, sd, stack, node.y, node.z);
break;
case NODE_GEOMETRY_BUMP_DY:
svm_node_geometry_bump_dy(kg, sd, stack, node.y, node.z);
break;
case NODE_SET_DISPLACEMENT:
svm_node_set_displacement(kg, sd, stack, node.y);
break;
# endif /* NODES_FEATURE(NODE_FEATURE_BUMP) */
# ifdef __TEXTURES__
case NODE_TEX_IMAGE:
svm_node_tex_image(kg, sd, stack, node);
break;
case NODE_TEX_IMAGE_BOX:
svm_node_tex_image_box(kg, sd, stack, node);
break;
case NODE_TEX_NOISE:
svm_node_tex_noise(kg, sd, stack, node, &offset);
break;
# endif /* __TEXTURES__ */
# ifdef __EXTRA_NODES__
# if NODES_FEATURE(NODE_FEATURE_BUMP)
case NODE_SET_BUMP:
svm_node_set_bump(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DX:
svm_node_attr_bump_dx(kg, sd, stack, node);
break;
case NODE_ATTR_BUMP_DY:
svm_node_attr_bump_dy(kg, sd, stack, node);
break;
case NODE_TEX_COORD_BUMP_DX:
svm_node_tex_coord_bump_dx(kg, sd, path_flag, stack, node, &offset);
break;
case NODE_TEX_COORD_BUMP_DY:
svm_node_tex_coord_bump_dy(kg, sd, path_flag, stack, node, &offset);
break;
case NODE_CLOSURE_SET_NORMAL:
svm_node_set_normal(kg, sd, stack, node.y, node.z);
break;
# if NODES_FEATURE(NODE_FEATURE_BUMP_STATE)
case NODE_ENTER_BUMP_EVAL:
svm_node_enter_bump_eval(kg, sd, stack, node.y);
break;
case NODE_LEAVE_BUMP_EVAL:
svm_node_leave_bump_eval(kg, sd, stack, node.y);
break;
# endif /* NODES_FEATURE(NODE_FEATURE_BUMP_STATE) */
# endif /* NODES_FEATURE(NODE_FEATURE_BUMP) */
case NODE_HSV:
svm_node_hsv(kg, sd, stack, node, &offset);
break;
# endif /* __EXTRA_NODES__ */
#endif /* NODES_GROUP(NODE_GROUP_LEVEL_0) */
#if NODES_GROUP(NODE_GROUP_LEVEL_1)
case NODE_CLOSURE_HOLDOUT:
svm_node_closure_holdout(sd, stack, node);
break;
case NODE_CLOSURE_AMBIENT_OCCLUSION:
svm_node_closure_ambient_occlusion(sd, stack, node);
break;
case NODE_FRESNEL:
svm_node_fresnel(sd, stack, node.y, node.z, node.w);
break;
case NODE_LAYER_WEIGHT:
svm_node_layer_weight(sd, stack, node);
break;
# if NODES_FEATURE(NODE_FEATURE_VOLUME)
case NODE_CLOSURE_VOLUME:
svm_node_closure_volume(kg, sd, stack, node, path_flag);
break;
# endif /* NODES_FEATURE(NODE_FEATURE_VOLUME) */
# ifdef __EXTRA_NODES__
case NODE_MATH:
svm_node_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_MATH:
svm_node_vector_math(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_RGB_RAMP:
svm_node_rgb_ramp(kg, sd, stack, node, &offset);
break;
case NODE_GAMMA:
svm_node_gamma(sd, stack, node.y, node.z, node.w);
break;
case NODE_BRIGHTCONTRAST:
svm_node_brightness(sd, stack, node.y, node.z, node.w);
break;
case NODE_LIGHT_PATH:
svm_node_light_path(sd, state, stack, node.y, node.z, path_flag);
break;
case NODE_OBJECT_INFO:
svm_node_object_info(kg, sd, stack, node.y, node.z);
break;
case NODE_PARTICLE_INFO:
svm_node_particle_info(kg, sd, stack, node.y, node.z);
break;
# ifdef __HAIR__
# if NODES_FEATURE(NODE_FEATURE_HAIR)
case NODE_HAIR_INFO:
svm_node_hair_info(kg, sd, stack, node.y, node.z);
break;
# endif /* NODES_FEATURE(NODE_FEATURE_HAIR) */
# endif /* __HAIR__ */
# endif /* __EXTRA_NODES__ */
#endif /* NODES_GROUP(NODE_GROUP_LEVEL_1) */
#if NODES_GROUP(NODE_GROUP_LEVEL_2)
case NODE_MAPPING:
svm_node_mapping(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_MIN_MAX:
svm_node_min_max(kg, sd, stack, node.y, node.z, &offset);
break;
case NODE_CAMERA:
svm_node_camera(kg, sd, stack, node.y, node.z, node.w);
break;
# ifdef __TEXTURES__
case NODE_TEX_ENVIRONMENT:
svm_node_tex_environment(kg, sd, stack, node);
break;
case NODE_TEX_SKY:
svm_node_tex_sky(kg, sd, stack, node, &offset);
break;
case NODE_TEX_GRADIENT:
svm_node_tex_gradient(sd, stack, node);
break;
case NODE_TEX_VORONOI:
svm_node_tex_voronoi(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MUSGRAVE:
svm_node_tex_musgrave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_WAVE:
svm_node_tex_wave(kg, sd, stack, node, &offset);
break;
case NODE_TEX_MAGIC:
svm_node_tex_magic(kg, sd, stack, node, &offset);
break;
case NODE_TEX_CHECKER:
svm_node_tex_checker(kg, sd, stack, node);
break;
case NODE_TEX_BRICK:
svm_node_tex_brick(kg, sd, stack, node, &offset);
break;
# endif /* __TEXTURES__ */
# ifdef __EXTRA_NODES__
case NODE_NORMAL:
svm_node_normal(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_LIGHT_FALLOFF:
svm_node_light_falloff(sd, stack, node);
break;
# endif /* __EXTRA_NODES__ */
#endif /* NODES_GROUP(NODE_GROUP_LEVEL_2) */
#if NODES_GROUP(NODE_GROUP_LEVEL_3)
case NODE_RGB_CURVES:
case NODE_VECTOR_CURVES:
svm_node_curves(kg, sd, stack, node, &offset);
break;
case NODE_TANGENT:
svm_node_tangent(kg, sd, stack, node);
break;
case NODE_NORMAL_MAP:
svm_node_normal_map(kg, sd, stack, node);
break;
# ifdef __EXTRA_NODES__
case NODE_INVERT:
svm_node_invert(sd, stack, node.y, node.z, node.w);
break;
case NODE_MIX:
svm_node_mix(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_SEPARATE_VECTOR:
svm_node_separate_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_COMBINE_VECTOR:
svm_node_combine_vector(sd, stack, node.y, node.z, node.w);
break;
case NODE_SEPARATE_HSV:
svm_node_separate_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_COMBINE_HSV:
svm_node_combine_hsv(kg, sd, stack, node.y, node.z, node.w, &offset);
break;
case NODE_VECTOR_TRANSFORM:
svm_node_vector_transform(kg, sd, stack, node);
break;
case NODE_WIREFRAME:
svm_node_wireframe(kg, sd, stack, node);
break;
case NODE_WAVELENGTH:
svm_node_wavelength(sd, stack, node.y, node.z);
break;
case NODE_BLACKBODY:
svm_node_blackbody(kg, sd, stack, node.y, node.z);
break;
# endif /* __EXTRA_NODES__ */
# if NODES_FEATURE(NODE_FEATURE_VOLUME)
case NODE_TEX_VOXEL:
svm_node_tex_voxel(kg, sd, stack, node, &offset);
break;
# endif /* NODES_FEATURE(NODE_FEATURE_VOLUME) */
#endif /* NODES_GROUP(NODE_GROUP_LEVEL_3) */
case NODE_END:
return;
default:
kernel_assert(!"Unknown node type was passed to the SVM machine");
return;
}
}
}
#undef NODES_GROUP
#undef NODES_FEATURE
CCL_NAMESPACE_END
#endif /* __SVM_H__ */