blender/release/scripts/io/engine_render_pov.py
Campbell Barton 78bb45931c scene.render_data -> scene.render
bpy.types.SceneRenderData -> bpy.types.RenderSettings

better do these changes before there are too many scripts out.
2010-02-23 12:48:35 +00:00

965 lines
34 KiB
Python

# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
#
# ##### END GPL LICENSE BLOCK #####
# <pep8 compliant>
import bpy
from math import atan, pi, degrees
import subprocess
import os
import sys
import time
import platform as pltfrm
if pltfrm.architecture()[0] == '64bit':
bitness = 64
else:
bitness = 32
def write_pov(filename, scene=None, info_callback=None):
file = open(filename, 'w')
# Only for testing
if not scene:
scene = bpy.data.scenes[0]
render = scene.render
world = scene.world
def uniqueName(name, nameSeq):
if name not in nameSeq:
return name
name_orig = name
i = 1
while name in nameSeq:
name = '%s_%.3d' % (name_orig, i)
i += 1
return name
def writeMatrix(matrix):
file.write('\tmatrix <%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f>\n' %\
(matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
def writeObjectMaterial(material):
if material and material.transparency_method == 'RAYTRACE':
file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
# Other interior args
# fade_distance 2
# fade_power [Value]
# fade_color
# dispersion
# dispersion_samples
materialNames = {}
DEF_MAT_NAME = 'Default'
def writeMaterial(material):
# Assumes only called once on each material
if material:
name_orig = material.name
else:
name_orig = DEF_MAT_NAME
name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames)
file.write('#declare %s = finish {\n' % name)
if material:
file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
file.write('\tspecular %.3g\n' % material.specular_intensity)
file.write('\tambient %.3g\n' % material.ambient)
#file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
# map hardness between 0.0 and 1.0
roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
# scale from 0.0 to 0.1
roughness *= 0.1
# add a small value because 0.0 is invalid
roughness += (1 / 511.0)
file.write('\troughness %.3g\n' % roughness)
# 'phong 70.0 '
if material.raytrace_mirror.enabled:
raytrace_mirror = material.raytrace_mirror
if raytrace_mirror.reflect_factor:
file.write('\treflection {\n')
file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
else:
file.write('\tdiffuse 0.8\n')
file.write('\tspecular 0.2\n')
# This is written into the object
'''
if material and material.transparency_method=='RAYTRACE':
'interior { ior %.3g} ' % material.raytrace_transparency.ior
'''
#file.write('\t\t\tcrand 1.0\n') # Sand granyness
#file.write('\t\t\tmetallic %.6f\n' % material.spec)
#file.write('\t\t\tphong %.6f\n' % material.spec)
#file.write('\t\t\tphong_size %.6f\n' % material.spec)
#file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
file.write('}\n')
def exportCamera():
camera = scene.camera
matrix = camera.matrix
# compute resolution
Qsize = float(render.resolution_x) / float(render.resolution_y)
file.write('camera {\n')
file.write('\tlocation <0, 0, 0>\n')
file.write('\tlook_at <0, 0, -1>\n')
file.write('\tright <%s, 0, 0>\n' % - Qsize)
file.write('\tup <0, 1, 0>\n')
file.write('\tangle %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))
file.write('\trotate <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
file.write('}\n')
def exportLamps(lamps):
# Get all lamps
for ob in lamps:
lamp = ob.data
matrix = ob.matrix
color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
file.write('light_source {\n')
file.write('\t< 0,0,0 >\n')
file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
if lamp.type == 'POINT': # Point Lamp
pass
elif lamp.type == 'SPOT': # Spot
file.write('\tspotlight\n')
# Falloff is the main radius from the centre line
file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
# Blender does not have a tightness equivilent, 0 is most like blender default.
file.write('\ttightness 0\n') # 0:10f
file.write('\tpoint_at <0, 0, -1>\n')
elif lamp.type == 'SUN':
file.write('\tparallel\n')
file.write('\tpoint_at <0, 0, -1>\n') # *must* be after 'parallel'
elif lamp.type == 'AREA':
size_x = lamp.size
samples_x = lamp.shadow_ray_samples_x
if lamp.shape == 'SQUARE':
size_y = size_x
samples_y = samples_x
else:
size_y = lamp.size_y
samples_y = lamp.shadow_ray_samples_y
file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
if lamp.jitter:
file.write('\tjitter\n')
else:
file.write('\tadaptive 1\n')
file.write('\tjitter\n')
if lamp.shadow_method == 'NOSHADOW':
file.write('\tshadowless\n')
file.write('\tfade_distance %.6f\n' % lamp.distance)
file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
writeMatrix(matrix)
file.write('}\n')
def exportMeta(metas):
# TODO - blenders 'motherball' naming is not supported.
for ob in metas:
meta = ob.data
file.write('blob {\n')
file.write('\t\tthreshold %.4g\n' % meta.threshold)
try:
material = meta.materials[0] # lame! - blender cant do enything else.
except:
material = None
for elem in meta.elements:
if elem.type not in ('BALL', 'ELLIPSOID'):
continue # Not supported
loc = elem.location
stiffness = elem.stiffness
if elem.negative:
stiffness = - stiffness
if elem.type == 'BALL':
file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
# After this wecould do something simple like...
# "pigment {Blue} }"
# except we'll write the color
elif elem.type == 'ELLIPSOID':
# location is modified by scale
file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
if material:
diffuse_color = material.diffuse_color
if material.transparency and material.transparency_method == 'RAYTRACE':
trans = 1.0 - material.raytrace_transparency.filter
else:
trans = 0.0
file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
(diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
else:
file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME) # Write the finish last.
writeObjectMaterial(material)
writeMatrix(ob.matrix)
file.write('}\n')
def exportMeshs(sel):
ob_num = 0
for ob in sel:
ob_num += 1
if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE'):
continue
me = ob.data
me_materials = me.materials
me = ob.create_mesh(True, 'RENDER')
if not me:
continue
if info_callback:
info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
#if ob.type!='MESH':
# continue
# me = ob.data
matrix = ob.matrix
try:
uv_layer = me.active_uv_texture.data
except:
uv_layer = None
try:
vcol_layer = me.active_vertex_color.data
except:
vcol_layer = None
faces_verts = [f.verts for f in me.faces]
faces_normals = [tuple(f.normal) for f in me.faces]
verts_normals = [tuple(v.normal) for v in me.verts]
# quads incur an extra face
quadCount = len([f for f in faces_verts if len(f) == 4])
file.write('mesh2 {\n')
file.write('\tvertex_vectors {\n')
file.write('\t\t%s' % (len(me.verts))) # vert count
for v in me.verts:
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
file.write('\n }\n')
# Build unique Normal list
uniqueNormals = {}
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
# [-1] is a dummy index, use a list so we can modify in place
if f.smooth: # Use vertex normals
for v in fv:
key = verts_normals[v]
uniqueNormals[key] = [-1]
else: # Use face normal
key = faces_normals[fi]
uniqueNormals[key] = [-1]
file.write('\tnormal_vectors {\n')
file.write('\t\t%d' % len(uniqueNormals)) # vert count
idx = 0
for no, index in uniqueNormals.items():
file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
index[0] = idx
idx += 1
file.write('\n }\n')
# Vertex colours
vertCols = {} # Use for material colours also.
if uv_layer:
# Generate unique UV's
uniqueUVs = {}
for fi, uv in enumerate(uv_layer):
if len(faces_verts[fi]) == 4:
uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
else:
uvs = uv.uv1, uv.uv2, uv.uv3
for uv in uvs:
uniqueUVs[tuple(uv)] = [-1]
file.write('\tuv_vectors {\n')
#print unique_uvs
file.write('\t\t%s' % (len(uniqueUVs))) # vert count
idx = 0
for uv, index in uniqueUVs.items():
file.write(',\n\t\t<%.6f, %.6f>' % uv)
index[0] = idx
idx += 1
'''
else:
# Just add 1 dummy vector, no real UV's
file.write('\t\t1') # vert count
file.write(',\n\t\t<0.0, 0.0>')
'''
file.write('\n }\n')
if me.vertex_colors:
for fi, f in enumerate(me.faces):
material_index = f.material_index
material = me_materials[material_index]
if material and material.vertex_color_paint:
col = vcol_layer[fi]
if len(faces_verts[fi]) == 4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
for col in cols:
key = col[0], col[1], col[2], material_index # Material index!
vertCols[key] = [-1]
else:
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
vertCols[key] = [-1]
else:
# No vertex colours, so write material colours as vertex colours
for i, material in enumerate(me_materials):
if material:
diffuse_color = tuple(material.diffuse_color)
key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
vertCols[key] = [-1]
# Vert Colours
file.write('\ttexture_list {\n')
file.write('\t\t%s' % (len(vertCols))) # vert count
idx = 0
for col, index in vertCols.items():
if me_materials:
material = me_materials[col[3]]
material_finish = materialNames[material.name]
if material.transparency and material.transparency_method == 'RAYTRACE':
trans = 1.0 - material.raytrace_transparency.filter
else:
trans = 0.0
else:
material_finish = DEF_MAT_NAME # not working properly,
trans = 0.0
#print material.apl
file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
(col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
index[0] = idx
idx += 1
file.write('\n }\n')
# Face indicies
file.write('\tface_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, f in enumerate(me.faces):
fv = faces_verts[fi]
material_index = f.material_index
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
if vcol_layer:
col = vcol_layer[fi]
if len(fv) == 4:
cols = col.color1, col.color2, col.color3, col.color4
else:
cols = col.color1, col.color2, col.color3
if not me_materials or me_materials[material_index] == None: # No materials
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
else:
material = me_materials[material_index]
for i1, i2, i3 in indicies:
if me.vertex_colors and material.vertex_color_paint:
# Colour per vertex - vertex colour
col1 = cols[i1]
col2 = cols[i2]
col3 = cols[i3]
ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
else:
# Colour per material - flat material colour
diffuse_color = material.diffuse_color
ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
file.write('\n }\n')
# normal_indices indicies
file.write('\tnormal_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
for i1, i2, i3 in indicies:
if f.smooth:
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueNormals[verts_normals[fv[i1]]][0],\
uniqueNormals[verts_normals[fv[i2]]][0],\
uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
else:
idx = uniqueNormals[faces_normals[fi]][0]
file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
file.write('\n }\n')
if uv_layer:
file.write('\tuv_indices {\n')
file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
for fi, fv in enumerate(faces_verts):
if len(fv) == 4:
indicies = (0, 1, 2), (0, 2, 3)
else:
indicies = ((0, 1, 2),)
uv = uv_layer[fi]
if len(faces_verts[fi]) == 4:
uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
else:
uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
for i1, i2, i3 in indicies:
file.write(',\n\t\t<%d,%d,%d>' %\
(uniqueUVs[uvs[i1]][0],\
uniqueUVs[uvs[i2]][0],\
uniqueUVs[uvs[i2]][0])) # vert count
file.write('\n }\n')
if me.materials:
material = me.materials[0] # dodgy
writeObjectMaterial(material)
writeMatrix(matrix)
file.write('}\n')
bpy.data.meshes.remove(me)
def exportWorld(world):
if not world:
return
mist = world.mist
if mist.enabled:
file.write('fog {\n')
file.write('\tdistance %.6f\n' % mist.depth)
file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
#file.write('\tfog_offset %.6f\n' % mist.start)
#file.write('\tfog_alt 5\n')
#file.write('\tturbulence 0.2\n')
#file.write('\tturb_depth 0.3\n')
file.write('\tfog_type 1\n')
file.write('}\n')
def exportGlobalSettings(scene):
file.write('global_settings {\n')
if scene.pov_radio_enable:
file.write('\tradiosity {\n')
file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
file.write("\t\tcount %d\n" % scene.pov_radio_count)
file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
file.write("\t\tmedia %d\n" % scene.pov_radio_media)
file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
file.write('\t}\n')
if world:
file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
file.write('}\n')
# Convert all materials to strings we can access directly per vertex.
writeMaterial(None) # default material
for material in bpy.data.materials:
writeMaterial(material)
exportCamera()
#exportMaterials()
sel = scene.objects
exportLamps([l for l in sel if l.type == 'LAMP'])
exportMeta([l for l in sel if l.type == 'META'])
exportMeshs(sel)
exportWorld(scene.world)
exportGlobalSettings(scene)
file.close()
def write_pov_ini(filename_ini, filename_pov, filename_image):
scene = bpy.data.scenes[0]
render = scene.render
x = int(render.resolution_x * render.resolution_percentage * 0.01)
y = int(render.resolution_y * render.resolution_percentage * 0.01)
file = open(filename_ini, 'w')
file.write('Input_File_Name="%s"\n' % filename_pov)
file.write('Output_File_Name="%s"\n' % filename_image)
file.write('Width=%d\n' % x)
file.write('Height=%d\n' % y)
# Needed for border render.
'''
file.write('Start_Column=%d\n' % part.x)
file.write('End_Column=%d\n' % (part.x+part.w))
file.write('Start_Row=%d\n' % (part.y))
file.write('End_Row=%d\n' % (part.y+part.h))
'''
file.write('Display=0\n')
file.write('Pause_When_Done=0\n')
file.write('Output_File_Type=T\n') # TGA, best progressive loading
file.write('Output_Alpha=1\n')
if render.antialiasing:
aa_mapping = {'OVERSAMPLE_5': 2, 'OVERSAMPLE_8': 3, 'OVERSAMPLE_11': 4, 'OVERSAMPLE_16': 5} # method 1 assumed
file.write('Antialias=1\n')
file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
else:
file.write('Antialias=0\n')
file.close()
# Radiosity panel, use in the scene for now.
FloatProperty = bpy.types.Scene.FloatProperty
IntProperty = bpy.types.Scene.IntProperty
BoolProperty = bpy.types.Scene.BoolProperty
# Not a real pov option, just to know if we should write
BoolProperty(attr="pov_radio_enable",
name="Enable Radiosity",
description="Enable povrays radiosity calculation",
default=False)
BoolProperty(attr="pov_radio_display_advanced",
name="Advanced Options",
description="Show advanced options",
default=False)
# Real pov options
FloatProperty(attr="pov_radio_adc_bailout",
name="ADC Bailout",
description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results",
min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default=0.01)
BoolProperty(attr="pov_radio_always_sample",
name="Always Sample",
description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass",
default=True)
FloatProperty(attr="pov_radio_brightness",
name="Brightness",
description="Amount objects are brightened before being returned upwards to the rest of the system",
min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default=1.0)
IntProperty(attr="pov_radio_count",
name="Ray Count",
description="Number of rays that are sent out whenever a new radiosity value has to be calculated",
min=1, max=1600, default=35)
FloatProperty(attr="pov_radio_error_bound",
name="Error Bound",
description="One of the two main speed/quality tuning values, lower values are more accurate",
min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default=1.8)
FloatProperty(attr="pov_radio_gray_threshold",
name="Gray Threshold",
description="One of the two main speed/quality tuning values, lower values are more accurate",
min=0.0, max=1.0, soft_min=0, soft_max=1, default=0.0)
FloatProperty(attr="pov_radio_low_error_factor",
name="Low Error Factor",
description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting",
min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default=0.5)
# max_sample - not available yet
BoolProperty(attr="pov_radio_media",
name="Media",
description="Radiosity estimation can be affected by media",
default=False)
FloatProperty(attr="pov_radio_minimum_reuse",
name="Minimum Reuse",
description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors)",
min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default=0.015)
IntProperty(attr="pov_radio_nearest_count",
name="Nearest Count",
description="Number of old ambient values blended together to create a new interpolated value",
min=1, max=20, default=5)
BoolProperty(attr="pov_radio_normal",
name="Normals",
description="Radiosity estimation can be affected by normals",
default=False)
IntProperty(attr="pov_radio_recursion_limit",
name="Recursion Limit",
description="how many recursion levels are used to calculate the diffuse inter-reflection",
min=1, max=20, default=3)
class PovrayRender(bpy.types.RenderEngine):
bl_idname = 'POVRAY_RENDER'
bl_label = "Povray"
DELAY = 0.02
def _export(self, scene):
import tempfile
self._temp_file_in = tempfile.mktemp(suffix='.pov')
self._temp_file_out = tempfile.mktemp(suffix='.tga')
self._temp_file_ini = tempfile.mktemp(suffix='.ini')
'''
self._temp_file_in = '/test.pov'
self._temp_file_out = '/test.tga'
self._temp_file_ini = '/test.ini'
'''
def info_callback(txt):
self.update_stats("", "POVRAY: " + txt)
write_pov(self._temp_file_in, scene, info_callback)
def _render(self):
try:
os.remove(self._temp_file_out) # so as not to load the old file
except:
pass
write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
print ("***-STARTING-***")
pov_binary = "povray"
if sys.platform == 'win32':
import winreg
regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
if bitness == 64:
pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
else:
pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
if 1:
# TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
else:
# This works too but means we have to wait until its done
os.system('%s %s' % (pov_binary, self._temp_file_ini))
print ("***-DONE-***")
def _cleanup(self):
for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
try:
os.remove(f)
except:
pass
self.update_stats("", "")
def render(self, scene):
self.update_stats("", "POVRAY: Exporting data from Blender")
self._export(scene)
self.update_stats("", "POVRAY: Parsing File")
self._render()
r = scene.render
# compute resolution
x = int(r.resolution_x * r.resolution_percentage * 0.01)
y = int(r.resolution_y * r.resolution_percentage * 0.01)
# Wait for the file to be created
while not os.path.exists(self._temp_file_out):
if self.test_break():
try:
self._process.terminate()
except:
pass
break
if self._process.poll() != None:
self.update_stats("", "POVRAY: Failed")
break
time.sleep(self.DELAY)
if os.path.exists(self._temp_file_out):
self.update_stats("", "POVRAY: Rendering")
prev_size = -1
def update_image():
result = self.begin_result(0, 0, x, y)
lay = result.layers[0]
# possible the image wont load early on.
try:
lay.load_from_file(self._temp_file_out)
except:
pass
self.end_result(result)
# Update while povray renders
while True:
# test if povray exists
if self._process.poll() is not None:
update_image()
break
# user exit
if self.test_break():
try:
self._process.terminate()
except:
pass
break
# Would be nice to redirect the output
# stdout_value, stderr_value = self._process.communicate() # locks
# check if the file updated
new_size = os.path.getsize(self._temp_file_out)
if new_size != prev_size:
update_image()
prev_size = new_size
time.sleep(self.DELAY)
self._cleanup()
# Use some of the existing buttons.
import properties_render
properties_render.RENDER_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_render.RENDER_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
del properties_render
# Use only a subset of the world panels
import properties_world
properties_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
properties_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
del properties_world
# Example of wrapping every class 'as is'
import properties_material
for member in dir(properties_material):
subclass = getattr(properties_material, member)
try:
subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
except:
pass
del properties_material
class RenderButtonsPanel(bpy.types.Panel):
bl_space_type = 'PROPERTIES'
bl_region_type = 'WINDOW'
bl_context = "render"
# COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here
def poll(self, context):
rd = context.scene.render
return (rd.use_game_engine == False) and (rd.engine in self.COMPAT_ENGINES)
class RENDER_PT_povray_radiosity(RenderButtonsPanel):
bl_label = "Radiosity"
COMPAT_ENGINES = {'POVRAY_RENDER'}
def draw_header(self, context):
scene = context.scene
self.layout.prop(scene, "pov_radio_enable", text="")
def draw(self, context):
layout = self.layout
scene = context.scene
rd = scene.render
layout.active = scene.pov_radio_enable
split = layout.split()
col = split.column()
col.prop(scene, "pov_radio_count", text="Rays")
col.prop(scene, "pov_radio_recursion_limit", text="Recursions")
col = split.column()
col.prop(scene, "pov_radio_error_bound", text="Error")
layout.prop(scene, "pov_radio_display_advanced")
if scene.pov_radio_display_advanced:
split = layout.split()
col = split.column()
col.prop(scene, "pov_radio_adc_bailout", slider=True)
col.prop(scene, "pov_radio_gray_threshold", slider=True)
col.prop(scene, "pov_radio_low_error_factor", slider=True)
col = split.column()
col.prop(scene, "pov_radio_brightness")
col.prop(scene, "pov_radio_minimum_reuse", text="Min Reuse")
col.prop(scene, "pov_radio_nearest_count")
split = layout.split()
col = split.column()
col.label(text="Estimation Influence:")
col.prop(scene, "pov_radio_media")
col.prop(scene, "pov_radio_normal")
col = split.column()
col.prop(scene, "pov_radio_always_sample")
classes = [
PovrayRender,
RENDER_PT_povray_radiosity]
def register():
register = bpy.types.register
for cls in classes:
register(cls)
def unregister():
unregister = bpy.types.unregister
for cls in classes:
unregister(cls)
if __name__ == "__main__":
register()