forked from bartvdbraak/blender
Brecht Van Lommel
5fa68133c9
This gives you "Multiple Importance", "Distance" and "Equiangular" choices. What multiple importance sampling does is make things more robust to certain types of noise at the cost of a bit more noise in cases where the individual strategies are always better. So if you've got a pretty dense volume that's lit from far away then distance sampling is usually more efficient. If you've got a light inside or near the volume then equiangular sampling is better. If you have a combination of both, then the multiple importance sampling will be better.
1146 lines
35 KiB
C
1146 lines
35 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
#ifdef __OSL__
|
|
#include "osl_shader.h"
|
|
#endif
|
|
|
|
#include "kernel_random.h"
|
|
#include "kernel_projection.h"
|
|
#include "kernel_montecarlo.h"
|
|
#include "kernel_differential.h"
|
|
#include "kernel_camera.h"
|
|
|
|
#include "geom/geom.h"
|
|
|
|
#include "kernel_accumulate.h"
|
|
#include "kernel_shader.h"
|
|
#include "kernel_light.h"
|
|
#include "kernel_passes.h"
|
|
|
|
#ifdef __SUBSURFACE__
|
|
#include "kernel_subsurface.h"
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
#include "kernel_volume.h"
|
|
#endif
|
|
|
|
#include "kernel_path_state.h"
|
|
#include "kernel_shadow.h"
|
|
#include "kernel_emission.h"
|
|
#include "kernel_path_surface.h"
|
|
#include "kernel_path_volume.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, Ray ray,
|
|
float3 throughput, int num_samples, PathState state, PathRadiance *L)
|
|
{
|
|
/* path iteration */
|
|
for(;;) {
|
|
/* intersect scene */
|
|
Intersection isect;
|
|
uint visibility = path_state_ray_visibility(kg, &state);
|
|
#ifdef __HAIR__
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f);
|
|
#else
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect);
|
|
#endif
|
|
|
|
#ifdef __LAMP_MIS__
|
|
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
|
|
/* ray starting from previous non-transparent bounce */
|
|
Ray light_ray;
|
|
|
|
light_ray.P = ray.P - state.ray_t*ray.D;
|
|
state.ray_t += isect.t;
|
|
light_ray.D = ray.D;
|
|
light_ray.t = state.ray_t;
|
|
light_ray.time = ray.time;
|
|
light_ray.dD = ray.dD;
|
|
light_ray.dP = ray.dP;
|
|
|
|
/* intersect with lamp */
|
|
float3 emission;
|
|
|
|
if(indirect_lamp_emission(kg, &state, &light_ray, &emission))
|
|
path_radiance_accum_emission(L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
/* volume attenuation, emission, scatter */
|
|
if(state.volume_stack[0].shader != SHADER_NONE) {
|
|
Ray volume_ray = ray;
|
|
volume_ray.t = (hit)? isect.t: FLT_MAX;
|
|
|
|
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
|
|
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
|
|
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, false, sampling_method);
|
|
|
|
if(decoupled) {
|
|
/* cache steps along volume for repeated sampling */
|
|
VolumeSegment volume_segment;
|
|
ShaderData volume_sd;
|
|
|
|
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
|
|
kernel_volume_decoupled_record(kg, &state,
|
|
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
|
|
|
|
volume_segment.sampling_method = sampling_method;
|
|
|
|
/* emission */
|
|
if(volume_segment.closure_flag & SD_EMISSION)
|
|
path_radiance_accum_emission(L, throughput, volume_segment.accum_emission, state.bounce);
|
|
|
|
/* scattering */
|
|
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
|
|
bool scatter = false;
|
|
|
|
if(volume_segment.closure_flag & SD_SCATTER) {
|
|
bool all = kernel_data.integrator.sample_all_lights_indirect;
|
|
|
|
/* direct light sampling */
|
|
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
|
|
throughput, &state, L, 1.0f, all, &volume_ray, &volume_segment);
|
|
|
|
/* indirect sample. if we use distance sampling and take just
|
|
* one sample for direct and indirect light, we could share
|
|
* this computation, but makes code a bit complex */
|
|
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
|
|
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
|
|
|
|
result = kernel_volume_decoupled_scatter(kg,
|
|
&state, &volume_ray, &volume_sd, &throughput,
|
|
rphase, rscatter, &volume_segment, NULL, true);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED)
|
|
scatter = kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray, 1.0f);
|
|
}
|
|
|
|
/* free cached steps */
|
|
kernel_volume_decoupled_free(kg, &volume_segment);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
if(scatter)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* integrate along volume segment with distance sampling */
|
|
ShaderData volume_sd;
|
|
VolumeIntegrateResult result = kernel_volume_integrate(
|
|
kg, &state, &volume_sd, &volume_ray, L, &throughput, rng);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
/* direct lighting */
|
|
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, L, 1.0f);
|
|
|
|
/* indirect light bounce */
|
|
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, L, &ray, 1.0f))
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(!hit) {
|
|
#ifdef __BACKGROUND__
|
|
/* sample background shader */
|
|
float3 L_background = indirect_background(kg, &state, &ray);
|
|
path_radiance_accum_background(L, throughput, L_background, state.bounce);
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
/* setup shading */
|
|
ShaderData sd;
|
|
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
|
|
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
|
|
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_INDIRECT);
|
|
#ifdef __BRANCHED_PATH__
|
|
shader_merge_closures(&sd);
|
|
#endif
|
|
|
|
/* blurring of bsdf after bounces, for rays that have a small likelihood
|
|
* of following this particular path (diffuse, rough glossy) */
|
|
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
|
|
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
|
|
|
|
if(blur_pdf < 1.0f) {
|
|
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
|
|
shader_bsdf_blur(kg, &sd, blur_roughness);
|
|
}
|
|
}
|
|
|
|
#ifdef __EMISSION__
|
|
/* emission */
|
|
if(sd.flag & SD_EMISSION) {
|
|
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
|
|
path_radiance_accum_emission(L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
/* path termination. this is a strange place to put the termination, it's
|
|
* mainly due to the mixed in MIS that we use. gives too many unneeded
|
|
* shader evaluations, only need emission if we are going to terminate */
|
|
float probability = path_state_terminate_probability(kg, &state, throughput*num_samples);
|
|
|
|
if(probability == 0.0f) {
|
|
break;
|
|
}
|
|
else if(probability != 1.0f) {
|
|
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
|
|
|
|
if(terminate >= probability)
|
|
break;
|
|
|
|
throughput /= probability;
|
|
}
|
|
|
|
#ifdef __AO__
|
|
/* ambient occlusion */
|
|
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
|
|
float bsdf_u, bsdf_v;
|
|
path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
|
|
|
float ao_factor = kernel_data.background.ao_factor;
|
|
float3 ao_N;
|
|
float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
|
|
float3 ao_D;
|
|
float ao_pdf;
|
|
float3 ao_alpha = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
|
|
|
|
if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
|
|
Ray light_ray;
|
|
float3 ao_shadow;
|
|
|
|
light_ray.P = ray_offset(sd.P, sd.Ng);
|
|
light_ray.D = ao_D;
|
|
light_ray.t = kernel_data.background.ao_distance;
|
|
#ifdef __OBJECT_MOTION__
|
|
light_ray.time = sd.time;
|
|
#endif
|
|
light_ray.dP = sd.dP;
|
|
light_ray.dD = differential3_zero();
|
|
|
|
if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
|
|
path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state.bounce);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SUBSURFACE__
|
|
/* bssrdf scatter to a different location on the same object, replacing
|
|
* the closures with a diffuse BSDF */
|
|
if(sd.flag & SD_BSSRDF) {
|
|
float bssrdf_probability;
|
|
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, &sd, &bssrdf_probability);
|
|
|
|
/* modify throughput for picking bssrdf or bsdf */
|
|
throughput *= bssrdf_probability;
|
|
|
|
/* do bssrdf scatter step if we picked a bssrdf closure */
|
|
if(sc) {
|
|
uint lcg_state = lcg_state_init(rng, &state, 0x68bc21eb);
|
|
|
|
float bssrdf_u, bssrdf_v;
|
|
path_state_rng_2D(kg, rng, &state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
|
|
subsurface_scatter_step(kg, &sd, state.flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false);
|
|
|
|
state.flag |= PATH_RAY_BSSRDF_ANCESTOR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
|
|
if(kernel_data.integrator.use_direct_light) {
|
|
bool all = kernel_data.integrator.sample_all_lights_indirect;
|
|
kernel_branched_path_surface_connect_light(kg, rng, &sd, &state, throughput, 1.0f, L, all);
|
|
}
|
|
#endif
|
|
|
|
if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, L, &ray))
|
|
break;
|
|
}
|
|
}
|
|
|
|
ccl_device void kernel_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput)
|
|
{
|
|
/* todo: solve correlation */
|
|
float bsdf_u, bsdf_v;
|
|
|
|
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
|
|
|
float ao_factor = kernel_data.background.ao_factor;
|
|
float3 ao_N;
|
|
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
|
|
float3 ao_D;
|
|
float ao_pdf;
|
|
float3 ao_alpha = shader_bsdf_alpha(kg, sd);
|
|
|
|
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
|
|
|
|
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
|
|
Ray light_ray;
|
|
float3 ao_shadow;
|
|
|
|
light_ray.P = ray_offset(sd->P, sd->Ng);
|
|
light_ray.D = ao_D;
|
|
light_ray.t = kernel_data.background.ao_distance;
|
|
#ifdef __OBJECT_MOTION__
|
|
light_ray.time = sd->time;
|
|
#endif
|
|
light_ray.dP = sd->dP;
|
|
light_ray.dD = differential3_zero();
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &ao_shadow))
|
|
path_radiance_accum_ao(L, throughput, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
|
|
}
|
|
}
|
|
|
|
ccl_device void kernel_branched_path_ao(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput)
|
|
{
|
|
int num_samples = kernel_data.integrator.ao_samples;
|
|
float num_samples_inv = 1.0f/num_samples;
|
|
float ao_factor = kernel_data.background.ao_factor;
|
|
float3 ao_N;
|
|
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
|
|
float3 ao_alpha = shader_bsdf_alpha(kg, sd);
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
float bsdf_u, bsdf_v;
|
|
path_branched_rng_2D(kg, rng, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
|
|
|
float3 ao_D;
|
|
float ao_pdf;
|
|
|
|
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
|
|
|
|
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
|
|
Ray light_ray;
|
|
float3 ao_shadow;
|
|
|
|
light_ray.P = ray_offset(sd->P, sd->Ng);
|
|
light_ray.D = ao_D;
|
|
light_ray.t = kernel_data.background.ao_distance;
|
|
#ifdef __OBJECT_MOTION__
|
|
light_ray.time = sd->time;
|
|
#endif
|
|
light_ray.dP = sd->dP;
|
|
light_ray.dD = differential3_zero();
|
|
|
|
if(!shadow_blocked(kg, state, &light_ray, &ao_shadow))
|
|
path_radiance_accum_ao(L, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow, state->bounce);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __SUBSURFACE__
|
|
ccl_device bool kernel_path_subsurface_scatter(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, Ray *ray, float3 *throughput)
|
|
{
|
|
float bssrdf_probability;
|
|
ShaderClosure *sc = subsurface_scatter_pick_closure(kg, sd, &bssrdf_probability);
|
|
|
|
/* modify throughput for picking bssrdf or bsdf */
|
|
*throughput *= bssrdf_probability;
|
|
|
|
/* do bssrdf scatter step if we picked a bssrdf closure */
|
|
if(sc) {
|
|
uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
|
|
|
|
ShaderData bssrdf_sd[BSSRDF_MAX_HITS];
|
|
float bssrdf_u, bssrdf_v;
|
|
path_state_rng_2D(kg, rng, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
|
|
int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, false);
|
|
|
|
/* compute lighting with the BSDF closure */
|
|
for(int hit = 0; hit < num_hits; hit++) {
|
|
float3 tp = *throughput;
|
|
PathState hit_state = *state;
|
|
Ray hit_ray = *ray;
|
|
|
|
hit_state.flag |= PATH_RAY_BSSRDF_ANCESTOR;
|
|
hit_state.rng_offset += PRNG_BOUNCE_NUM;
|
|
|
|
kernel_path_surface_connect_light(kg, rng, &bssrdf_sd[hit], tp, state, L);
|
|
|
|
if(kernel_path_surface_bounce(kg, rng, &bssrdf_sd[hit], &tp, &hit_state, L, &hit_ray)) {
|
|
#ifdef __LAMP_MIS__
|
|
hit_state.ray_t = 0.0f;
|
|
#endif
|
|
|
|
kernel_path_indirect(kg, rng, hit_ray, tp, state->num_samples, hit_state, L);
|
|
|
|
/* for render passes, sum and reset indirect light pass variables
|
|
* for the next samples */
|
|
path_radiance_sum_indirect(L);
|
|
path_radiance_reset_indirect(L);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
ccl_device float4 kernel_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer)
|
|
{
|
|
/* initialize */
|
|
PathRadiance L;
|
|
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
|
|
float L_transparent = 0.0f;
|
|
|
|
path_radiance_init(&L, kernel_data.film.use_light_pass);
|
|
|
|
PathState state;
|
|
path_state_init(kg, &state, rng, sample);
|
|
|
|
/* path iteration */
|
|
for(;;) {
|
|
/* intersect scene */
|
|
Intersection isect;
|
|
uint visibility = path_state_ray_visibility(kg, &state);
|
|
|
|
#ifdef __HAIR__
|
|
float difl = 0.0f, extmax = 0.0f;
|
|
uint lcg_state = 0;
|
|
|
|
if(kernel_data.bvh.have_curves) {
|
|
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
|
|
float3 pixdiff = ray.dD.dx + ray.dD.dy;
|
|
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
|
|
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
|
|
}
|
|
|
|
extmax = kernel_data.curve.maximum_width;
|
|
lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
|
|
}
|
|
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax);
|
|
#else
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect);
|
|
#endif
|
|
|
|
#ifdef __LAMP_MIS__
|
|
if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
|
|
/* ray starting from previous non-transparent bounce */
|
|
Ray light_ray;
|
|
|
|
light_ray.P = ray.P - state.ray_t*ray.D;
|
|
state.ray_t += isect.t;
|
|
light_ray.D = ray.D;
|
|
light_ray.t = state.ray_t;
|
|
light_ray.time = ray.time;
|
|
light_ray.dD = ray.dD;
|
|
light_ray.dP = ray.dP;
|
|
|
|
/* intersect with lamp */
|
|
float3 emission;
|
|
|
|
if(indirect_lamp_emission(kg, &state, &light_ray, &emission))
|
|
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
/* volume attenuation, emission, scatter */
|
|
if(state.volume_stack[0].shader != SHADER_NONE) {
|
|
Ray volume_ray = ray;
|
|
volume_ray.t = (hit)? isect.t: FLT_MAX;
|
|
|
|
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
|
|
int sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
|
|
bool decoupled = kernel_volume_use_decoupled(kg, heterogeneous, true, sampling_method);
|
|
|
|
if(decoupled) {
|
|
/* cache steps along volume for repeated sampling */
|
|
VolumeSegment volume_segment;
|
|
ShaderData volume_sd;
|
|
|
|
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
|
|
kernel_volume_decoupled_record(kg, &state,
|
|
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
|
|
|
|
volume_segment.sampling_method = sampling_method;
|
|
|
|
/* emission */
|
|
if(volume_segment.closure_flag & SD_EMISSION)
|
|
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
|
|
|
|
/* scattering */
|
|
VolumeIntegrateResult result = VOLUME_PATH_ATTENUATED;
|
|
bool scatter = false;
|
|
|
|
if(volume_segment.closure_flag & SD_SCATTER) {
|
|
bool all = false;
|
|
|
|
/* direct light sampling */
|
|
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
|
|
throughput, &state, &L, 1.0f, all, &volume_ray, &volume_segment);
|
|
|
|
/* indirect sample. if we use distance sampling and take just
|
|
* one sample for direct and indirect light, we could share
|
|
* this computation, but makes code a bit complex */
|
|
float rphase = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_PHASE);
|
|
float rscatter = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_SCATTER_DISTANCE);
|
|
|
|
result = kernel_volume_decoupled_scatter(kg,
|
|
&state, &volume_ray, &volume_sd, &throughput,
|
|
rphase, rscatter, &volume_segment, NULL, true);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED)
|
|
scatter = kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray, 1.0f);
|
|
}
|
|
|
|
/* free cached steps */
|
|
kernel_volume_decoupled_free(kg, &volume_segment);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
if(scatter)
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
else {
|
|
/* integrate along volume segment with distance sampling */
|
|
ShaderData volume_sd;
|
|
VolumeIntegrateResult result = kernel_volume_integrate(
|
|
kg, &state, &volume_sd, &volume_ray, &L, &throughput, rng);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
/* direct lighting */
|
|
kernel_path_volume_connect_light(kg, rng, &volume_sd, throughput, &state, &L, 1.0f);
|
|
|
|
/* indirect light bounce */
|
|
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &throughput, &state, &L, &ray, 1.0f))
|
|
continue;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if(!hit) {
|
|
/* eval background shader if nothing hit */
|
|
if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
|
|
L_transparent += average(throughput);
|
|
|
|
#ifdef __PASSES__
|
|
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
#ifdef __BACKGROUND__
|
|
/* sample background shader */
|
|
float3 L_background = indirect_background(kg, &state, &ray);
|
|
path_radiance_accum_background(&L, throughput, L_background, state.bounce);
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
/* setup shading */
|
|
ShaderData sd;
|
|
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
|
|
float rbsdf = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_BSDF);
|
|
shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
|
|
|
|
/* holdout */
|
|
#ifdef __HOLDOUT__
|
|
if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
|
|
if(kernel_data.background.transparent) {
|
|
float3 holdout_weight;
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
|
|
else
|
|
holdout_weight = shader_holdout_eval(kg, &sd);
|
|
|
|
/* any throughput is ok, should all be identical here */
|
|
L_transparent += average(holdout_weight*throughput);
|
|
}
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* holdout mask objects do not write data passes */
|
|
kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
|
|
|
|
/* blurring of bsdf after bounces, for rays that have a small likelihood
|
|
* of following this particular path (diffuse, rough glossy) */
|
|
if(kernel_data.integrator.filter_glossy != FLT_MAX) {
|
|
float blur_pdf = kernel_data.integrator.filter_glossy*state.min_ray_pdf;
|
|
|
|
if(blur_pdf < 1.0f) {
|
|
float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
|
|
shader_bsdf_blur(kg, &sd, blur_roughness);
|
|
}
|
|
}
|
|
|
|
#ifdef __EMISSION__
|
|
/* emission */
|
|
if(sd.flag & SD_EMISSION) {
|
|
/* todo: is isect.t wrong here for transparent surfaces? */
|
|
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
|
|
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
/* path termination. this is a strange place to put the termination, it's
|
|
* mainly due to the mixed in MIS that we use. gives too many unneeded
|
|
* shader evaluations, only need emission if we are going to terminate */
|
|
float probability = path_state_terminate_probability(kg, &state, throughput);
|
|
|
|
if(probability == 0.0f) {
|
|
break;
|
|
}
|
|
else if(probability != 1.0f) {
|
|
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
|
|
|
|
if(terminate >= probability)
|
|
break;
|
|
|
|
throughput /= probability;
|
|
}
|
|
|
|
#ifdef __AO__
|
|
/* ambient occlusion */
|
|
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
|
|
kernel_path_ao(kg, &sd, &L, &state, rng, throughput);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SUBSURFACE__
|
|
/* bssrdf scatter to a different location on the same object, replacing
|
|
* the closures with a diffuse BSDF */
|
|
if(sd.flag & SD_BSSRDF) {
|
|
if(kernel_path_subsurface_scatter(kg, &sd, &L, &state, rng, &ray, &throughput))
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* direct lighting */
|
|
kernel_path_surface_connect_light(kg, rng, &sd, throughput, &state, &L);
|
|
|
|
/* compute direct lighting and next bounce */
|
|
if(!kernel_path_surface_bounce(kg, rng, &sd, &throughput, &state, &L, &ray))
|
|
break;
|
|
}
|
|
|
|
float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
|
|
|
|
kernel_write_light_passes(kg, buffer, &L, sample);
|
|
|
|
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
|
|
}
|
|
|
|
#ifdef __BRANCHED_PATH__
|
|
|
|
/* branched path tracing: bounce off surface and integrate indirect light */
|
|
ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGlobals *kg,
|
|
RNG *rng, ShaderData *sd, float3 throughput, float num_samples_adjust,
|
|
PathState *state, PathRadiance *L)
|
|
{
|
|
for(int i = 0; i< sd->num_closure; i++) {
|
|
const ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(!CLOSURE_IS_BSDF(sc->type))
|
|
continue;
|
|
/* transparency is not handled here, but in outer loop */
|
|
if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
|
|
continue;
|
|
|
|
int num_samples;
|
|
|
|
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
|
|
num_samples = kernel_data.integrator.diffuse_samples;
|
|
else if(CLOSURE_IS_BSDF_BSSRDF(sc->type))
|
|
num_samples = 1;
|
|
else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
|
|
num_samples = kernel_data.integrator.glossy_samples;
|
|
else
|
|
num_samples = kernel_data.integrator.transmission_samples;
|
|
|
|
num_samples = ceil_to_int(num_samples_adjust*num_samples);
|
|
|
|
float num_samples_inv = num_samples_adjust/num_samples;
|
|
RNG bsdf_rng = cmj_hash(*rng, i);
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
PathState ps = *state;
|
|
float3 tp = throughput;
|
|
Ray bsdf_ray;
|
|
|
|
if(!kernel_branched_path_surface_bounce(kg, &bsdf_rng, sd, sc, j, num_samples, &tp, &ps, L, &bsdf_ray))
|
|
continue;
|
|
|
|
kernel_path_indirect(kg, rng, bsdf_ray, tp*num_samples_inv, num_samples, ps, L);
|
|
|
|
/* for render passes, sum and reset indirect light pass variables
|
|
* for the next samples */
|
|
path_radiance_sum_indirect(L);
|
|
path_radiance_reset_indirect(L);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef __SUBSURFACE__
|
|
ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg, ShaderData *sd, PathRadiance *L, PathState *state, RNG *rng, float3 throughput)
|
|
{
|
|
for(int i = 0; i< sd->num_closure; i++) {
|
|
ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(!CLOSURE_IS_BSSRDF(sc->type))
|
|
continue;
|
|
|
|
/* set up random number generator */
|
|
uint lcg_state = lcg_state_init(rng, state, 0x68bc21eb);
|
|
int num_samples = kernel_data.integrator.subsurface_samples;
|
|
float num_samples_inv = 1.0f/num_samples;
|
|
RNG bssrdf_rng = cmj_hash(*rng, i);
|
|
|
|
state->flag |= PATH_RAY_BSSRDF_ANCESTOR;
|
|
|
|
/* do subsurface scatter step with copy of shader data, this will
|
|
* replace the BSSRDF with a diffuse BSDF closure */
|
|
for(int j = 0; j < num_samples; j++) {
|
|
ShaderData bssrdf_sd[BSSRDF_MAX_HITS];
|
|
float bssrdf_u, bssrdf_v;
|
|
path_branched_rng_2D(kg, &bssrdf_rng, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
|
|
int num_hits = subsurface_scatter_multi_step(kg, sd, bssrdf_sd, state->flag, sc, &lcg_state, bssrdf_u, bssrdf_v, true);
|
|
|
|
/* compute lighting with the BSDF closure */
|
|
for(int hit = 0; hit < num_hits; hit++) {
|
|
PathState hit_state = *state;
|
|
|
|
path_state_branch(&hit_state, j, num_samples);
|
|
|
|
#if defined(__EMISSION__) && defined(__BRANCHED_PATH__)
|
|
/* direct light */
|
|
if(kernel_data.integrator.use_direct_light) {
|
|
bool all = kernel_data.integrator.sample_all_lights_direct;
|
|
kernel_branched_path_surface_connect_light(kg, rng,
|
|
&bssrdf_sd[hit], &hit_state, throughput, num_samples_inv, L, all);
|
|
}
|
|
#endif
|
|
|
|
/* indirect light */
|
|
kernel_branched_path_surface_indirect_light(kg, rng,
|
|
&bssrdf_sd[hit], throughput, num_samples_inv,
|
|
&hit_state, L);
|
|
}
|
|
}
|
|
|
|
state->flag &= ~PATH_RAY_BSSRDF_ANCESTOR;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ccl_device float4 kernel_branched_path_integrate(KernelGlobals *kg, RNG *rng, int sample, Ray ray, ccl_global float *buffer)
|
|
{
|
|
/* initialize */
|
|
PathRadiance L;
|
|
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
|
|
float L_transparent = 0.0f;
|
|
|
|
path_radiance_init(&L, kernel_data.film.use_light_pass);
|
|
|
|
PathState state;
|
|
path_state_init(kg, &state, rng, sample);
|
|
|
|
for(;;) {
|
|
/* intersect scene */
|
|
Intersection isect;
|
|
uint visibility = path_state_ray_visibility(kg, &state);
|
|
|
|
#ifdef __HAIR__
|
|
float difl = 0.0f, extmax = 0.0f;
|
|
uint lcg_state = 0;
|
|
|
|
if(kernel_data.bvh.have_curves) {
|
|
if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {
|
|
float3 pixdiff = ray.dD.dx + ray.dD.dy;
|
|
/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
|
|
difl = kernel_data.curve.minimum_width * len(pixdiff) * 0.5f;
|
|
}
|
|
|
|
extmax = kernel_data.curve.maximum_width;
|
|
lcg_state = lcg_state_init(rng, &state, 0x51633e2d);
|
|
}
|
|
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax);
|
|
#else
|
|
bool hit = scene_intersect(kg, &ray, visibility, &isect);
|
|
#endif
|
|
|
|
#ifdef __VOLUME__
|
|
/* volume attenuation, emission, scatter */
|
|
if(state.volume_stack[0].shader != SHADER_NONE) {
|
|
Ray volume_ray = ray;
|
|
volume_ray.t = (hit)? isect.t: FLT_MAX;
|
|
|
|
#ifdef __KERNEL_CPU__
|
|
/* decoupled ray marching only supported on CPU */
|
|
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
|
|
|
|
/* cache steps along volume for repeated sampling */
|
|
VolumeSegment volume_segment;
|
|
ShaderData volume_sd;
|
|
|
|
shader_setup_from_volume(kg, &volume_sd, &volume_ray, state.bounce, state.transparent_bounce);
|
|
kernel_volume_decoupled_record(kg, &state,
|
|
&volume_ray, &volume_sd, &volume_segment, heterogeneous);
|
|
|
|
/* direct light sampling */
|
|
if(volume_segment.closure_flag & SD_SCATTER) {
|
|
volume_segment.sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
|
|
|
|
bool all = kernel_data.integrator.sample_all_lights_direct;
|
|
|
|
kernel_branched_path_volume_connect_light(kg, rng, &volume_sd,
|
|
throughput, &state, &L, 1.0f, all, &volume_ray, &volume_segment);
|
|
|
|
/* indirect light sampling */
|
|
int num_samples = kernel_data.integrator.volume_samples;
|
|
float num_samples_inv = 1.0f/num_samples;
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
/* workaround to fix correlation bug in T38710, can find better solution
|
|
* in random number generator later, for now this is done here to not impact
|
|
* performance of rendering without volumes */
|
|
RNG tmp_rng = cmj_hash(*rng, state.rng_offset);
|
|
|
|
PathState ps = state;
|
|
Ray pray = ray;
|
|
float3 tp = throughput;
|
|
|
|
/* branch RNG state */
|
|
path_state_branch(&ps, j, num_samples);
|
|
|
|
/* scatter sample. if we use distance sampling and take just one
|
|
* sample for direct and indirect light, we could share this
|
|
* computation, but makes code a bit complex */
|
|
float rphase = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_PHASE);
|
|
float rscatter = path_state_rng_1D_for_decision(kg, &tmp_rng, &ps, PRNG_SCATTER_DISTANCE);
|
|
|
|
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
|
|
&ps, &pray, &volume_sd, &tp, rphase, rscatter, &volume_segment, NULL, false);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray, num_samples_inv)) {
|
|
kernel_path_indirect(kg, rng, pray, tp*num_samples_inv, num_samples, ps, &L);
|
|
|
|
/* for render passes, sum and reset indirect light pass variables
|
|
* for the next samples */
|
|
path_radiance_sum_indirect(&L);
|
|
path_radiance_reset_indirect(&L);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* emission and transmittance */
|
|
if(volume_segment.closure_flag & SD_EMISSION)
|
|
path_radiance_accum_emission(&L, throughput, volume_segment.accum_emission, state.bounce);
|
|
throughput *= volume_segment.accum_transmittance;
|
|
|
|
/* free cached steps */
|
|
kernel_volume_decoupled_free(kg, &volume_segment);
|
|
#else
|
|
/* GPU: no decoupled ray marching, scatter probalistically */
|
|
int num_samples = kernel_data.integrator.volume_samples;
|
|
float num_samples_inv = 1.0f/num_samples;
|
|
|
|
/* todo: we should cache the shader evaluations from stepping
|
|
* through the volume, for now we redo them multiple times */
|
|
|
|
for(int j = 0; j < num_samples; j++) {
|
|
PathState ps = state;
|
|
Ray pray = ray;
|
|
ShaderData volume_sd;
|
|
float3 tp = throughput;
|
|
|
|
/* branch RNG state */
|
|
path_state_branch(&ps, j, num_samples);
|
|
|
|
VolumeIntegrateResult result = kernel_volume_integrate(
|
|
kg, &ps, &volume_sd, &volume_ray, &L, &tp, rng);
|
|
|
|
if(result == VOLUME_PATH_SCATTERED) {
|
|
/* todo: support equiangular, MIS and all light sampling.
|
|
* alternatively get decoupled ray marching working on the GPU */
|
|
kernel_path_volume_connect_light(kg, rng, &volume_sd, &volume_ray, throughput, &state, &L, num_samples_inv);
|
|
|
|
if(kernel_path_volume_bounce(kg, rng, &volume_sd, &tp, &ps, &L, &pray, num_samples_inv)) {
|
|
kernel_path_indirect(kg, rng, pray, tp*num_samples_inv, num_samples, ps, &L);
|
|
|
|
/* for render passes, sum and reset indirect light pass variables
|
|
* for the next samples */
|
|
path_radiance_sum_indirect(&L);
|
|
path_radiance_reset_indirect(&L);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* todo: avoid this calculation using decoupled ray marching */
|
|
kernel_volume_shadow(kg, &state, &volume_ray, &throughput);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
if(!hit) {
|
|
/* eval background shader if nothing hit */
|
|
if(kernel_data.background.transparent) {
|
|
L_transparent += average(throughput);
|
|
|
|
#ifdef __PASSES__
|
|
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
#ifdef __BACKGROUND__
|
|
/* sample background shader */
|
|
float3 L_background = indirect_background(kg, &state, &ray);
|
|
path_radiance_accum_background(&L, throughput, L_background, state.bounce);
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
/* setup shading */
|
|
ShaderData sd;
|
|
shader_setup_from_ray(kg, &sd, &isect, &ray, state.bounce, state.transparent_bounce);
|
|
shader_eval_surface(kg, &sd, 0.0f, state.flag, SHADER_CONTEXT_MAIN);
|
|
shader_merge_closures(&sd);
|
|
|
|
/* holdout */
|
|
#ifdef __HOLDOUT__
|
|
if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK))) {
|
|
if(kernel_data.background.transparent) {
|
|
float3 holdout_weight;
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
|
|
else
|
|
holdout_weight = shader_holdout_eval(kg, &sd);
|
|
|
|
/* any throughput is ok, should all be identical here */
|
|
L_transparent += average(holdout_weight*throughput);
|
|
}
|
|
|
|
if(sd.flag & SD_HOLDOUT_MASK)
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
/* holdout mask objects do not write data passes */
|
|
kernel_write_data_passes(kg, buffer, &L, &sd, sample, &state, throughput);
|
|
|
|
#ifdef __EMISSION__
|
|
/* emission */
|
|
if(sd.flag & SD_EMISSION) {
|
|
float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, state.ray_pdf);
|
|
path_radiance_accum_emission(&L, throughput, emission, state.bounce);
|
|
}
|
|
#endif
|
|
|
|
/* transparency termination */
|
|
if(state.flag & PATH_RAY_TRANSPARENT) {
|
|
/* path termination. this is a strange place to put the termination, it's
|
|
* mainly due to the mixed in MIS that we use. gives too many unneeded
|
|
* shader evaluations, only need emission if we are going to terminate */
|
|
float probability = path_state_terminate_probability(kg, &state, throughput);
|
|
|
|
if(probability == 0.0f) {
|
|
break;
|
|
}
|
|
else if(probability != 1.0f) {
|
|
float terminate = path_state_rng_1D_for_decision(kg, rng, &state, PRNG_TERMINATE);
|
|
|
|
if(terminate >= probability)
|
|
break;
|
|
|
|
throughput /= probability;
|
|
}
|
|
}
|
|
|
|
#ifdef __AO__
|
|
/* ambient occlusion */
|
|
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
|
|
kernel_branched_path_ao(kg, &sd, &L, &state, rng, throughput);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __SUBSURFACE__
|
|
/* bssrdf scatter to a different location on the same object */
|
|
if(sd.flag & SD_BSSRDF) {
|
|
kernel_branched_path_subsurface_scatter(kg, &sd, &L, &state, rng, throughput);
|
|
}
|
|
#endif
|
|
|
|
if(!(sd.flag & SD_HAS_ONLY_VOLUME)) {
|
|
PathState hit_state = state;
|
|
|
|
#ifdef __EMISSION__
|
|
/* direct light */
|
|
if(kernel_data.integrator.use_direct_light) {
|
|
bool all = kernel_data.integrator.sample_all_lights_direct;
|
|
kernel_branched_path_surface_connect_light(kg, rng,
|
|
&sd, &hit_state, throughput, 1.0f, &L, all);
|
|
}
|
|
#endif
|
|
|
|
/* indirect light */
|
|
kernel_branched_path_surface_indirect_light(kg, rng,
|
|
&sd, throughput, 1.0f, &hit_state, &L);
|
|
|
|
/* continue in case of transparency */
|
|
throughput *= shader_bsdf_transparency(kg, &sd);
|
|
|
|
if(is_zero(throughput))
|
|
break;
|
|
}
|
|
|
|
path_state_next(kg, &state, LABEL_TRANSPARENT);
|
|
ray.P = ray_offset(sd.P, -sd.Ng);
|
|
ray.t -= sd.ray_length; /* clipping works through transparent */
|
|
|
|
#ifdef __VOLUME__
|
|
/* enter/exit volume */
|
|
kernel_volume_stack_enter_exit(kg, &sd, state.volume_stack);
|
|
#endif
|
|
}
|
|
|
|
float3 L_sum = path_radiance_clamp_and_sum(kg, &L);
|
|
|
|
kernel_write_light_passes(kg, buffer, &L, sample);
|
|
|
|
return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
|
|
}
|
|
|
|
#endif
|
|
|
|
ccl_device_inline void kernel_path_trace_setup(KernelGlobals *kg, ccl_global uint *rng_state, int sample, int x, int y, RNG *rng, Ray *ray)
|
|
{
|
|
float filter_u;
|
|
float filter_v;
|
|
#ifdef __CMJ__
|
|
int num_samples = kernel_data.integrator.aa_samples;
|
|
#else
|
|
int num_samples = 0;
|
|
#endif
|
|
|
|
path_rng_init(kg, rng_state, sample, num_samples, rng, x, y, &filter_u, &filter_v);
|
|
|
|
/* sample camera ray */
|
|
|
|
float lens_u = 0.0f, lens_v = 0.0f;
|
|
|
|
if(kernel_data.cam.aperturesize > 0.0f)
|
|
path_rng_2D(kg, rng, sample, num_samples, PRNG_LENS_U, &lens_u, &lens_v);
|
|
|
|
float time = 0.0f;
|
|
|
|
#ifdef __CAMERA_MOTION__
|
|
if(kernel_data.cam.shuttertime != -1.0f)
|
|
time = path_rng_1D(kg, rng, sample, num_samples, PRNG_TIME);
|
|
#endif
|
|
|
|
camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, ray);
|
|
}
|
|
|
|
ccl_device void kernel_path_trace(KernelGlobals *kg,
|
|
ccl_global float *buffer, ccl_global uint *rng_state,
|
|
int sample, int x, int y, int offset, int stride)
|
|
{
|
|
/* buffer offset */
|
|
int index = offset + x + y*stride;
|
|
int pass_stride = kernel_data.film.pass_stride;
|
|
|
|
rng_state += index;
|
|
buffer += index*pass_stride;
|
|
|
|
/* initialize random numbers and ray */
|
|
RNG rng;
|
|
Ray ray;
|
|
|
|
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
|
|
|
|
/* integrate */
|
|
float4 L;
|
|
|
|
if(ray.t != 0.0f)
|
|
L = kernel_path_integrate(kg, &rng, sample, ray, buffer);
|
|
else
|
|
L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
/* accumulate result in output buffer */
|
|
kernel_write_pass_float4(buffer, sample, L);
|
|
|
|
path_rng_end(kg, rng_state, rng);
|
|
}
|
|
|
|
#ifdef __BRANCHED_PATH__
|
|
ccl_device void kernel_branched_path_trace(KernelGlobals *kg,
|
|
ccl_global float *buffer, ccl_global uint *rng_state,
|
|
int sample, int x, int y, int offset, int stride)
|
|
{
|
|
/* buffer offset */
|
|
int index = offset + x + y*stride;
|
|
int pass_stride = kernel_data.film.pass_stride;
|
|
|
|
rng_state += index;
|
|
buffer += index*pass_stride;
|
|
|
|
/* initialize random numbers and ray */
|
|
RNG rng;
|
|
Ray ray;
|
|
|
|
kernel_path_trace_setup(kg, rng_state, sample, x, y, &rng, &ray);
|
|
|
|
/* integrate */
|
|
float4 L;
|
|
|
|
if(ray.t != 0.0f)
|
|
L = kernel_branched_path_integrate(kg, &rng, sample, ray, buffer);
|
|
else
|
|
L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
|
|
/* accumulate result in output buffer */
|
|
kernel_write_pass_float4(buffer, sample, L);
|
|
|
|
path_rng_end(kg, rng_state, rng);
|
|
}
|
|
#endif
|
|
|
|
CCL_NAMESPACE_END
|
|
|