forked from bartvdbraak/blender
Brecht Van Lommel
5fa68133c9
This gives you "Multiple Importance", "Distance" and "Equiangular" choices. What multiple importance sampling does is make things more robust to certain types of noise at the cost of a bit more noise in cases where the individual strategies are always better. So if you've got a pretty dense volume that's lit from far away then distance sampling is usually more efficient. If you've got a light inside or near the volume then equiangular sampling is better. If you have a combination of both, then the multiple importance sampling will be better.
996 lines
31 KiB
C
996 lines
31 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Events for probalistic scattering */
|
|
|
|
typedef enum VolumeIntegrateResult {
|
|
VOLUME_PATH_SCATTERED = 0,
|
|
VOLUME_PATH_ATTENUATED = 1,
|
|
VOLUME_PATH_MISSED = 2
|
|
} VolumeIntegrateResult;
|
|
|
|
/* Volume shader properties
|
|
*
|
|
* extinction coefficient = absorption coefficient + scattering coefficient
|
|
* sigma_t = sigma_a + sigma_s */
|
|
|
|
typedef struct VolumeShaderCoefficients {
|
|
float3 sigma_a;
|
|
float3 sigma_s;
|
|
float3 emission;
|
|
} VolumeShaderCoefficients;
|
|
|
|
/* evaluate shader to get extinction coefficient at P */
|
|
ccl_device bool volume_shader_extinction_sample(KernelGlobals *kg, ShaderData *sd, PathState *state, float3 P, float3 *extinction)
|
|
{
|
|
sd->P = P;
|
|
shader_eval_volume(kg, sd, state->volume_stack, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
|
|
|
|
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER)))
|
|
return false;
|
|
|
|
float3 sigma_t = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < sd->num_closure; i++) {
|
|
const ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(CLOSURE_IS_VOLUME(sc->type))
|
|
sigma_t += sc->weight;
|
|
}
|
|
|
|
*extinction = sigma_t;
|
|
return true;
|
|
}
|
|
|
|
/* evaluate shader to get absorption, scattering and emission at P */
|
|
ccl_device bool volume_shader_sample(KernelGlobals *kg, ShaderData *sd, PathState *state, float3 P, VolumeShaderCoefficients *coeff)
|
|
{
|
|
sd->P = P;
|
|
shader_eval_volume(kg, sd, state->volume_stack, state->flag, SHADER_CONTEXT_VOLUME);
|
|
|
|
if(!(sd->flag & (SD_ABSORPTION|SD_SCATTER|SD_EMISSION)))
|
|
return false;
|
|
|
|
coeff->sigma_a = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
coeff->emission = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < sd->num_closure; i++) {
|
|
const ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(sc->type == CLOSURE_VOLUME_ABSORPTION_ID)
|
|
coeff->sigma_a += sc->weight;
|
|
else if(sc->type == CLOSURE_EMISSION_ID)
|
|
coeff->emission += sc->weight;
|
|
else if(CLOSURE_IS_VOLUME(sc->type))
|
|
coeff->sigma_s += sc->weight;
|
|
}
|
|
|
|
/* when at the max number of bounces, treat scattering as absorption */
|
|
if(sd->flag & SD_SCATTER) {
|
|
if(state->volume_bounce >= kernel_data.integrator.max_volume_bounce) {
|
|
coeff->sigma_a += coeff->sigma_s;
|
|
coeff->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
sd->flag &= ~SD_SCATTER;
|
|
sd->flag |= SD_ABSORPTION;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ccl_device float3 volume_color_transmittance(float3 sigma, float t)
|
|
{
|
|
return make_float3(expf(-sigma.x * t), expf(-sigma.y * t), expf(-sigma.z * t));
|
|
}
|
|
|
|
ccl_device float kernel_volume_channel_get(float3 value, int channel)
|
|
{
|
|
return (channel == 0)? value.x: ((channel == 1)? value.y: value.z);
|
|
}
|
|
|
|
ccl_device bool volume_stack_is_heterogeneous(KernelGlobals *kg, VolumeStack *stack)
|
|
{
|
|
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
|
|
int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2);
|
|
|
|
if(shader_flag & SD_HETEROGENEOUS_VOLUME)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ccl_device int volume_stack_sampling_method(KernelGlobals *kg, VolumeStack *stack)
|
|
{
|
|
if(kernel_data.integrator.num_all_lights == 0)
|
|
return 0;
|
|
|
|
int method = -1;
|
|
|
|
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
|
|
int shader_flag = kernel_tex_fetch(__shader_flag, (stack[i].shader & SHADER_MASK)*2);
|
|
|
|
if(shader_flag & SD_VOLUME_MIS) {
|
|
return SD_VOLUME_MIS;
|
|
}
|
|
else if(shader_flag & SD_VOLUME_EQUIANGULAR) {
|
|
if(method == 0)
|
|
return SD_VOLUME_MIS;
|
|
|
|
method = SD_VOLUME_EQUIANGULAR;
|
|
}
|
|
else {
|
|
if(method == SD_VOLUME_EQUIANGULAR)
|
|
return SD_VOLUME_MIS;
|
|
|
|
method = 0;
|
|
}
|
|
}
|
|
|
|
return method;
|
|
}
|
|
|
|
/* Volume Shadows
|
|
*
|
|
* These functions are used to attenuate shadow rays to lights. Both absorption
|
|
* and scattering will block light, represented by the extinction coefficient. */
|
|
|
|
/* homogeneous volume: assume shader evaluation at the starts gives
|
|
* the extinction coefficient for the entire line segment */
|
|
ccl_device void kernel_volume_shadow_homogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
|
|
{
|
|
float3 sigma_t;
|
|
|
|
if(volume_shader_extinction_sample(kg, sd, state, ray->P, &sigma_t))
|
|
*throughput *= volume_color_transmittance(sigma_t, ray->t);
|
|
}
|
|
|
|
/* heterogeneous volume: integrate stepping through the volume until we
|
|
* reach the end, get absorbed entirely, or run out of iterations */
|
|
ccl_device void kernel_volume_shadow_heterogeneous(KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd, float3 *throughput)
|
|
{
|
|
float3 tp = *throughput;
|
|
const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
|
|
|
|
/* prepare for stepping */
|
|
int max_steps = kernel_data.integrator.volume_max_steps;
|
|
float step = kernel_data.integrator.volume_step_size;
|
|
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step;
|
|
|
|
/* compute extinction at the start */
|
|
float t = 0.0f;
|
|
|
|
for(int i = 0; i < max_steps; i++) {
|
|
/* advance to new position */
|
|
float new_t = min(ray->t, (i+1) * step);
|
|
float dt = new_t - t;
|
|
|
|
/* use random position inside this segment to sample shader */
|
|
if(new_t == ray->t)
|
|
random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt;
|
|
|
|
float3 new_P = ray->P + ray->D * (t + random_jitter_offset);
|
|
float3 sigma_t;
|
|
|
|
/* compute attenuation over segment */
|
|
if(volume_shader_extinction_sample(kg, sd, state, new_P, &sigma_t)) {
|
|
/* todo: we could avoid computing expf() for each step by summing,
|
|
* because exp(a)*exp(b) = exp(a+b), but we still want a quick
|
|
* tp_eps check too */
|
|
tp *= volume_color_transmittance(sigma_t, new_t - t);
|
|
|
|
/* stop if nearly all light blocked */
|
|
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps)
|
|
break;
|
|
}
|
|
|
|
/* stop if at the end of the volume */
|
|
t = new_t;
|
|
if(t == ray->t)
|
|
break;
|
|
}
|
|
|
|
*throughput = tp;
|
|
}
|
|
|
|
/* get the volume attenuation over line segment defined by ray, with the
|
|
* assumption that there are no surfaces blocking light between the endpoints */
|
|
ccl_device_noinline void kernel_volume_shadow(KernelGlobals *kg, PathState *state, Ray *ray, float3 *throughput)
|
|
{
|
|
ShaderData sd;
|
|
shader_setup_from_volume(kg, &sd, ray, state->bounce, state->transparent_bounce);
|
|
|
|
if(volume_stack_is_heterogeneous(kg, state->volume_stack))
|
|
kernel_volume_shadow_heterogeneous(kg, state, ray, &sd, throughput);
|
|
else
|
|
kernel_volume_shadow_homogeneous(kg, state, ray, &sd, throughput);
|
|
}
|
|
|
|
/* Equi-angular sampling as in:
|
|
* "Importance Sampling Techniques for Path Tracing in Participating Media" */
|
|
|
|
ccl_device float kernel_volume_equiangular_sample(Ray *ray, float3 light_P, float xi, float *pdf)
|
|
{
|
|
float t = ray->t;
|
|
|
|
float delta = dot((light_P - ray->P) , ray->D);
|
|
float D = sqrtf(len_squared(light_P - ray->P) - delta * delta);
|
|
float theta_a = -atan2f(delta, D);
|
|
float theta_b = atan2f(t - delta, D);
|
|
float t_ = D * tanf((xi * theta_b) + (1 - xi) * theta_a);
|
|
|
|
*pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
|
|
|
|
return min(t, delta + t_); /* min is only for float precision errors */
|
|
}
|
|
|
|
ccl_device float kernel_volume_equiangular_pdf(Ray *ray, float3 light_P, float sample_t)
|
|
{
|
|
float delta = dot((light_P - ray->P) , ray->D);
|
|
float D = sqrtf(len_squared(light_P - ray->P) - delta * delta);
|
|
|
|
float t = ray->t;
|
|
float t_ = sample_t - delta;
|
|
|
|
float theta_a = -atan2f(delta, D);
|
|
float theta_b = atan2f(t - delta, D);
|
|
|
|
float pdf = D / ((theta_b - theta_a) * (D * D + t_ * t_));
|
|
|
|
return pdf;
|
|
}
|
|
|
|
/* Distance sampling */
|
|
|
|
ccl_device float kernel_volume_distance_sample(float max_t, float3 sigma_t, int channel, float xi, float3 *transmittance, float3 *pdf)
|
|
{
|
|
/* xi is [0, 1[ so log(0) should never happen, division by zero is
|
|
* avoided because sample_sigma_t > 0 when SD_SCATTER is set */
|
|
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
|
|
float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
|
|
float sample_transmittance = kernel_volume_channel_get(full_transmittance, channel);
|
|
|
|
float sample_t = min(max_t, -logf(1.0f - xi*(1.0f - sample_transmittance))/sample_sigma_t);
|
|
|
|
*transmittance = volume_color_transmittance(sigma_t, sample_t);
|
|
*pdf = (sigma_t * *transmittance)/(make_float3(1.0f, 1.0f, 1.0f) - full_transmittance);
|
|
|
|
/* todo: optimization: when taken together with hit/miss decision,
|
|
* the full_transmittance cancels out drops out and xi does not
|
|
* need to be remapped */
|
|
|
|
return sample_t;
|
|
}
|
|
|
|
ccl_device float3 kernel_volume_distance_pdf(float max_t, float3 sigma_t, float sample_t)
|
|
{
|
|
float3 full_transmittance = volume_color_transmittance(sigma_t, max_t);
|
|
float3 transmittance = volume_color_transmittance(sigma_t, sample_t);
|
|
|
|
return (sigma_t * transmittance)/(make_float3(1.0f, 1.0f, 1.0f) - full_transmittance);
|
|
}
|
|
|
|
/* Emission */
|
|
|
|
ccl_device float3 kernel_volume_emission_integrate(VolumeShaderCoefficients *coeff, int closure_flag, float3 transmittance, float t)
|
|
{
|
|
/* integral E * exp(-sigma_t * t) from 0 to t = E * (1 - exp(-sigma_t * t))/sigma_t
|
|
* this goes to E * t as sigma_t goes to zero
|
|
*
|
|
* todo: we should use an epsilon to avoid precision issues near zero sigma_t */
|
|
float3 emission = coeff->emission;
|
|
|
|
if(closure_flag & SD_ABSORPTION) {
|
|
float3 sigma_t = coeff->sigma_a + coeff->sigma_s;
|
|
|
|
emission.x *= (sigma_t.x > 0.0f)? (1.0f - transmittance.x)/sigma_t.x: t;
|
|
emission.y *= (sigma_t.y > 0.0f)? (1.0f - transmittance.y)/sigma_t.y: t;
|
|
emission.z *= (sigma_t.z > 0.0f)? (1.0f - transmittance.z)/sigma_t.z: t;
|
|
}
|
|
else
|
|
emission *= t;
|
|
|
|
return emission;
|
|
}
|
|
|
|
/* Volume Path */
|
|
|
|
/* homogeneous volume: assume shader evaluation at the start gives
|
|
* the volume shading coefficient for the entire line segment */
|
|
ccl_device VolumeIntegrateResult kernel_volume_integrate_homogeneous(KernelGlobals *kg,
|
|
PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput,
|
|
RNG *rng, bool probalistic_scatter)
|
|
{
|
|
VolumeShaderCoefficients coeff;
|
|
|
|
if(!volume_shader_sample(kg, sd, state, ray->P, &coeff))
|
|
return VOLUME_PATH_MISSED;
|
|
|
|
int closure_flag = sd->flag;
|
|
float t = ray->t;
|
|
float3 new_tp;
|
|
|
|
/* randomly scatter, and if we do t is shortened */
|
|
if(closure_flag & SD_SCATTER) {
|
|
/* extinction coefficient */
|
|
float3 sigma_t = coeff.sigma_a + coeff.sigma_s;
|
|
|
|
/* pick random color channel, we use the Veach one-sample
|
|
* model with balance heuristic for the channels */
|
|
float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
|
|
int channel = (int)(rphase*3.0f);
|
|
sd->randb_closure = rphase*3.0f - channel;
|
|
|
|
/* decide if we will hit or miss */
|
|
bool scatter = true;
|
|
float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
|
|
|
|
if(probalistic_scatter) {
|
|
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
|
|
float sample_transmittance = expf(-sample_sigma_t * t);
|
|
|
|
if(1.0f - xi >= sample_transmittance) {
|
|
scatter = true;
|
|
|
|
/* rescale random number so we can reuse it */
|
|
xi = 1.0f - (1.0f - xi - sample_transmittance)/(1.0f - sample_transmittance);
|
|
|
|
}
|
|
else
|
|
scatter = false;
|
|
}
|
|
|
|
if(scatter) {
|
|
/* scattering */
|
|
float3 pdf;
|
|
float3 transmittance;
|
|
float sample_t;
|
|
|
|
/* distance sampling */
|
|
sample_t = kernel_volume_distance_sample(ray->t, sigma_t, channel, xi, &transmittance, &pdf);
|
|
|
|
/* modifiy pdf for hit/miss decision */
|
|
if(probalistic_scatter)
|
|
pdf *= make_float3(1.0f, 1.0f, 1.0f) - volume_color_transmittance(sigma_t, t);
|
|
|
|
new_tp = *throughput * coeff.sigma_s * transmittance / average(pdf);
|
|
t = sample_t;
|
|
}
|
|
else {
|
|
/* no scattering */
|
|
float3 transmittance = volume_color_transmittance(sigma_t, t);
|
|
float pdf = average(transmittance);
|
|
new_tp = *throughput * transmittance / pdf;
|
|
}
|
|
}
|
|
else if(closure_flag & SD_ABSORPTION) {
|
|
/* absorption only, no sampling needed */
|
|
float3 transmittance = volume_color_transmittance(coeff.sigma_a, t);
|
|
new_tp = *throughput * transmittance;
|
|
}
|
|
|
|
/* integrate emission attenuated by extinction */
|
|
if(L && (closure_flag & SD_EMISSION)) {
|
|
float3 sigma_t = coeff.sigma_a + coeff.sigma_s;
|
|
float3 transmittance = volume_color_transmittance(sigma_t, ray->t);
|
|
float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, ray->t);
|
|
path_radiance_accum_emission(L, *throughput, emission, state->bounce);
|
|
}
|
|
|
|
/* modify throughput */
|
|
if(closure_flag & (SD_ABSORPTION|SD_SCATTER)) {
|
|
*throughput = new_tp;
|
|
|
|
/* prepare to scatter to new direction */
|
|
if(t < ray->t) {
|
|
/* adjust throughput and move to new location */
|
|
sd->P = ray->P + t*ray->D;
|
|
|
|
return VOLUME_PATH_SCATTERED;
|
|
}
|
|
}
|
|
|
|
return VOLUME_PATH_ATTENUATED;
|
|
}
|
|
|
|
/* heterogeneous volume distance sampling: integrate stepping through the
|
|
* volume until we reach the end, get absorbed entirely, or run out of
|
|
* iterations. this does probalistically scatter or get transmitted through
|
|
* for path tracing where we don't want to branch. */
|
|
ccl_device VolumeIntegrateResult kernel_volume_integrate_heterogeneous_distance(KernelGlobals *kg,
|
|
PathState *state, Ray *ray, ShaderData *sd, PathRadiance *L, float3 *throughput, RNG *rng)
|
|
{
|
|
float3 tp = *throughput;
|
|
const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
|
|
|
|
/* prepare for stepping */
|
|
int max_steps = kernel_data.integrator.volume_max_steps;
|
|
float step_size = kernel_data.integrator.volume_step_size;
|
|
float random_jitter_offset = lcg_step_float(&state->rng_congruential) * step_size;
|
|
|
|
/* compute coefficients at the start */
|
|
float t = 0.0f;
|
|
float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
/* pick random color channel, we use the Veach one-sample
|
|
* model with balance heuristic for the channels */
|
|
float xi = path_state_rng_1D_for_decision(kg, rng, state, PRNG_SCATTER_DISTANCE);
|
|
float rphase = path_state_rng_1D_for_decision(kg, rng, state, PRNG_PHASE);
|
|
int channel = (int)(rphase*3.0f);
|
|
sd->randb_closure = rphase*3.0f - channel;
|
|
bool has_scatter = false;
|
|
|
|
for(int i = 0; i < max_steps; i++) {
|
|
/* advance to new position */
|
|
float new_t = min(ray->t, (i+1) * step_size);
|
|
float dt = new_t - t;
|
|
|
|
/* use random position inside this segment to sample shader */
|
|
if(new_t == ray->t)
|
|
random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt;
|
|
|
|
float3 new_P = ray->P + ray->D * (t + random_jitter_offset);
|
|
VolumeShaderCoefficients coeff;
|
|
|
|
/* compute segment */
|
|
if(volume_shader_sample(kg, sd, state, new_P, &coeff)) {
|
|
int closure_flag = sd->flag;
|
|
float3 new_tp;
|
|
float3 transmittance;
|
|
bool scatter = false;
|
|
|
|
/* distance sampling */
|
|
if((closure_flag & SD_SCATTER) || (has_scatter && (closure_flag & SD_ABSORPTION))) {
|
|
has_scatter = true;
|
|
|
|
float3 sigma_t = coeff.sigma_a + coeff.sigma_s;
|
|
float3 sigma_s = coeff.sigma_s;
|
|
|
|
/* compute transmittance over full step */
|
|
transmittance = volume_color_transmittance(sigma_t, dt);
|
|
|
|
/* decide if we will scatter or continue */
|
|
float sample_transmittance = kernel_volume_channel_get(transmittance, channel);
|
|
|
|
if(1.0f - xi >= sample_transmittance) {
|
|
/* compute sampling distance */
|
|
float sample_sigma_t = kernel_volume_channel_get(sigma_t, channel);
|
|
float new_dt = -logf(1.0f - xi)/sample_sigma_t;
|
|
new_t = t + new_dt;
|
|
|
|
/* transmittance and pdf */
|
|
float3 new_transmittance = volume_color_transmittance(sigma_t, new_dt);
|
|
float3 pdf = sigma_t * new_transmittance;
|
|
|
|
/* throughput */
|
|
new_tp = tp * sigma_s * new_transmittance / average(pdf);
|
|
scatter = true;
|
|
}
|
|
else {
|
|
/* throughput */
|
|
float pdf = average(transmittance);
|
|
new_tp = tp * transmittance / pdf;
|
|
|
|
/* remap xi so we can reuse it and keep thing stratified */
|
|
xi = 1.0f - (1.0f - xi)/sample_transmittance;
|
|
}
|
|
}
|
|
else if(closure_flag & SD_ABSORPTION) {
|
|
/* absorption only, no sampling needed */
|
|
float3 sigma_a = coeff.sigma_a;
|
|
|
|
transmittance = volume_color_transmittance(sigma_a, dt);
|
|
new_tp = tp * transmittance;
|
|
}
|
|
|
|
/* integrate emission attenuated by absorption */
|
|
if(L && (closure_flag & SD_EMISSION)) {
|
|
float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, dt);
|
|
path_radiance_accum_emission(L, tp, emission, state->bounce);
|
|
}
|
|
|
|
/* modify throughput */
|
|
if(closure_flag & (SD_ABSORPTION|SD_SCATTER)) {
|
|
tp = new_tp;
|
|
|
|
/* stop if nearly all light blocked */
|
|
if(tp.x < tp_eps && tp.y < tp_eps && tp.z < tp_eps) {
|
|
tp = make_float3(0.0f, 0.0f, 0.0f);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* prepare to scatter to new direction */
|
|
if(scatter) {
|
|
/* adjust throughput and move to new location */
|
|
sd->P = ray->P + new_t*ray->D;
|
|
*throughput = tp;
|
|
|
|
return VOLUME_PATH_SCATTERED;
|
|
}
|
|
else {
|
|
/* accumulate transmittance */
|
|
accum_transmittance *= transmittance;
|
|
}
|
|
}
|
|
|
|
/* stop if at the end of the volume */
|
|
t = new_t;
|
|
if(t == ray->t)
|
|
break;
|
|
}
|
|
|
|
*throughput = tp;
|
|
|
|
return VOLUME_PATH_ATTENUATED;
|
|
}
|
|
|
|
/* get the volume attenuation and emission over line segment defined by
|
|
* ray, with the assumption that there are no surfaces blocking light
|
|
* between the endpoints. distance sampling is used to decide if we will
|
|
* scatter or not. */
|
|
ccl_device_noinline VolumeIntegrateResult kernel_volume_integrate(KernelGlobals *kg,
|
|
PathState *state, ShaderData *sd, Ray *ray, PathRadiance *L, float3 *throughput, RNG *rng)
|
|
{
|
|
/* workaround to fix correlation bug in T38710, can find better solution
|
|
* in random number generator later, for now this is done here to not impact
|
|
* performance of rendering without volumes */
|
|
RNG tmp_rng = cmj_hash(*rng, state->rng_offset);
|
|
bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
|
|
|
|
shader_setup_from_volume(kg, sd, ray, state->bounce, state->transparent_bounce);
|
|
|
|
if(heterogeneous)
|
|
return kernel_volume_integrate_heterogeneous_distance(kg, state, ray, sd, L, throughput, &tmp_rng);
|
|
else
|
|
return kernel_volume_integrate_homogeneous(kg, state, ray, sd, L, throughput, &tmp_rng, true);
|
|
}
|
|
|
|
/* Decoupled Volume Sampling
|
|
*
|
|
* VolumeSegment is list of coefficients and transmittance stored at all steps
|
|
* through a volume. This can then latter be used for decoupled sampling as in:
|
|
* "Importance Sampling Techniques for Path Tracing in Participating Media"
|
|
*
|
|
* On the GPU this is only supported for homogeneous volumes (1 step), due to
|
|
* no support for malloc/free and too much stack usage with a fix size array. */
|
|
|
|
typedef struct VolumeStep {
|
|
float3 sigma_s; /* scatter coefficient */
|
|
float3 sigma_t; /* extinction coefficient */
|
|
float3 accum_transmittance; /* accumulated transmittance including this step */
|
|
float3 cdf_distance; /* cumulative density function for distance sampling */
|
|
float t; /* distance at end of this step */
|
|
float shade_t; /* jittered distance where shading was done in step */
|
|
int closure_flag; /* shader evaluation closure flags */
|
|
} VolumeStep;
|
|
|
|
typedef struct VolumeSegment {
|
|
#ifdef __KERNEL_CPU__
|
|
VolumeStep *steps; /* recorded steps */
|
|
#else
|
|
VolumeStep steps[1]; /* recorded steps */
|
|
#endif
|
|
int numsteps; /* number of steps */
|
|
int closure_flag; /* accumulated closure flags from all steps */
|
|
|
|
float3 accum_emission; /* accumulated emission at end of segment */
|
|
float3 accum_transmittance; /* accumulated transmittance at end of segment */
|
|
|
|
int sampling_method; /* volume sampling method */
|
|
} VolumeSegment;
|
|
|
|
/* record volume steps to the end of the volume.
|
|
*
|
|
* it would be nice if we could only record up to the point that we need to scatter,
|
|
* but the entire segment is needed to do always scattering, rather than probalistically
|
|
* hitting or missing the volume. if we don't know the transmittance at the end of the
|
|
* volume we can't generate stratitied distance samples up to that transmittance */
|
|
ccl_device void kernel_volume_decoupled_record(KernelGlobals *kg, PathState *state,
|
|
Ray *ray, ShaderData *sd, VolumeSegment *segment, bool heterogeneous)
|
|
{
|
|
const float tp_eps = 1e-6f; /* todo: this is likely not the right value */
|
|
|
|
/* prepare for volume stepping */
|
|
int max_steps;
|
|
float step_size, random_jitter_offset;
|
|
|
|
if(heterogeneous) {
|
|
max_steps = kernel_data.integrator.volume_max_steps;
|
|
step_size = kernel_data.integrator.volume_step_size;
|
|
random_jitter_offset = lcg_step_float(&state->rng_congruential) * step_size;
|
|
|
|
/* compute exact steps in advance for malloc */
|
|
max_steps = max((int)ceilf(ray->t/step_size), 1);
|
|
}
|
|
else {
|
|
max_steps = 1;
|
|
step_size = ray->t;
|
|
random_jitter_offset = 0.0f;
|
|
}
|
|
|
|
/* init accumulation variables */
|
|
float3 accum_emission = make_float3(0.0f, 0.0f, 0.0f);
|
|
float3 accum_transmittance = make_float3(1.0f, 1.0f, 1.0f);
|
|
float3 cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
|
|
float t = 0.0f;
|
|
|
|
segment->closure_flag = 0;
|
|
segment->numsteps = 0;
|
|
#ifdef __KERNEL_CPU__
|
|
segment->steps = (VolumeStep*)malloc(sizeof(VolumeStep)*max_steps);
|
|
#else
|
|
kernel_assert(max_steps == 1);
|
|
#endif
|
|
|
|
VolumeStep *step = segment->steps;
|
|
|
|
for(int i = 0; i < max_steps; i++, step++) {
|
|
/* advance to new position */
|
|
float new_t = min(ray->t, (i+1) * step_size);
|
|
float dt = new_t - t;
|
|
|
|
/* use random position inside this segment to sample shader */
|
|
if(heterogeneous && new_t == ray->t)
|
|
random_jitter_offset = lcg_step_float(&state->rng_congruential) * dt;
|
|
|
|
float3 new_P = ray->P + ray->D * (t + random_jitter_offset);
|
|
VolumeShaderCoefficients coeff;
|
|
|
|
/* compute segment */
|
|
if(volume_shader_sample(kg, sd, state, new_P, &coeff)) {
|
|
int closure_flag = sd->flag;
|
|
float3 sigma_t = coeff.sigma_a + coeff.sigma_s;
|
|
|
|
/* compute accumulated transmittance */
|
|
float3 transmittance = volume_color_transmittance(sigma_t, dt);
|
|
|
|
/* compute emission attenuated by absorption */
|
|
if(closure_flag & SD_EMISSION) {
|
|
float3 emission = kernel_volume_emission_integrate(&coeff, closure_flag, transmittance, dt);
|
|
accum_emission += accum_transmittance * emission;
|
|
}
|
|
|
|
accum_transmittance *= transmittance;
|
|
|
|
/* compute pdf for distance sampling */
|
|
float3 pdf_distance = dt * accum_transmittance * coeff.sigma_s;
|
|
cdf_distance = cdf_distance + pdf_distance;
|
|
|
|
/* write step data */
|
|
step->sigma_t = sigma_t;
|
|
step->sigma_s = coeff.sigma_s;
|
|
step->closure_flag = closure_flag;
|
|
|
|
segment->closure_flag |= closure_flag;
|
|
}
|
|
else {
|
|
/* store empty step (todo: skip consecutive empty steps) */
|
|
step->sigma_t = make_float3(0.0f, 0.0f, 0.0f);
|
|
step->sigma_s = make_float3(0.0f, 0.0f, 0.0f);
|
|
step->closure_flag = 0;
|
|
}
|
|
|
|
step->accum_transmittance = accum_transmittance;
|
|
step->cdf_distance = cdf_distance;
|
|
step->t = new_t;
|
|
step->shade_t = t + random_jitter_offset;
|
|
|
|
segment->numsteps++;
|
|
|
|
/* stop if at the end of the volume */
|
|
t = new_t;
|
|
if(t == ray->t)
|
|
break;
|
|
|
|
/* stop if nearly all light blocked */
|
|
if(accum_transmittance.x < tp_eps && accum_transmittance.y < tp_eps && accum_transmittance.z < tp_eps)
|
|
break;
|
|
}
|
|
|
|
/* store total emission and transmittance */
|
|
segment->accum_emission = accum_emission;
|
|
segment->accum_transmittance = accum_transmittance;
|
|
|
|
/* normalize cumulative density function for distance sampling */
|
|
VolumeStep *last_step = segment->steps + segment->numsteps - 1;
|
|
|
|
if(!is_zero(last_step->cdf_distance)) {
|
|
VolumeStep *step = &segment->steps[0];
|
|
int numsteps = segment->numsteps;
|
|
float3 inv_cdf_distance_sum = safe_invert_color(last_step->cdf_distance);
|
|
|
|
for(int i = 0; i < numsteps; i++, step++)
|
|
step->cdf_distance *= inv_cdf_distance_sum;
|
|
}
|
|
}
|
|
|
|
ccl_device void kernel_volume_decoupled_free(KernelGlobals *kg, VolumeSegment *segment)
|
|
{
|
|
#ifdef __KERNEL_CPU__
|
|
free(segment->steps);
|
|
#endif
|
|
}
|
|
|
|
/* scattering for homogeneous and heterogeneous volumes, using decoupled ray
|
|
* marching. unlike the non-decoupled functions, these do not do probalistic
|
|
* scattering, they always scatter if there is any non-zero scattering
|
|
* coefficient.
|
|
*
|
|
* these also do not do emission or modify throughput. */
|
|
ccl_device VolumeIntegrateResult kernel_volume_decoupled_scatter(
|
|
KernelGlobals *kg, PathState *state, Ray *ray, ShaderData *sd,
|
|
float3 *throughput, float rphase, float rscatter,
|
|
const VolumeSegment *segment, const float3 *light_P, bool probalistic_scatter)
|
|
{
|
|
int closure_flag = segment->closure_flag;
|
|
|
|
/* XXX add probalistic scattering! */
|
|
|
|
if(!(closure_flag & SD_SCATTER))
|
|
return VOLUME_PATH_MISSED;
|
|
|
|
/* pick random color channel, we use the Veach one-sample
|
|
* model with balance heuristic for the channels */
|
|
int channel = (int)(rphase*3.0f);
|
|
sd->randb_closure = rphase*3.0f - channel;
|
|
float xi = rscatter;
|
|
|
|
/* probalistic scattering decision based on transmittance */
|
|
if(probalistic_scatter) {
|
|
float sample_transmittance = kernel_volume_channel_get(segment->accum_transmittance, channel);
|
|
|
|
if(1.0f - xi >= sample_transmittance) {
|
|
/* rescale random number so we can reuse it */
|
|
xi = 1.0f - (1.0f - xi - sample_transmittance)/(1.0f - sample_transmittance);
|
|
}
|
|
else
|
|
return VOLUME_PATH_MISSED;
|
|
}
|
|
|
|
VolumeStep *step;
|
|
float3 transmittance;
|
|
float pdf, sample_t;
|
|
float mis_weight = 1.0f;
|
|
bool distance_sample = true;
|
|
bool use_mis = false;
|
|
|
|
if(segment->sampling_method && light_P) {
|
|
if(segment->sampling_method == SD_VOLUME_MIS) {
|
|
/* multiple importance sample: randomly pick between
|
|
* equiangular and distance sampling strategy */
|
|
if(xi < 0.5f) {
|
|
xi *= 2.0f;
|
|
}
|
|
else {
|
|
xi = (xi - 0.5f)*2.0f;
|
|
distance_sample = false;
|
|
}
|
|
|
|
use_mis = true;
|
|
}
|
|
else {
|
|
/* only equiangular sampling */
|
|
distance_sample = false;
|
|
}
|
|
}
|
|
|
|
/* distance sampling */
|
|
if(distance_sample) {
|
|
/* find step in cdf */
|
|
step = segment->steps;
|
|
|
|
float prev_t = 0.0f;
|
|
float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
if(segment->numsteps > 1) {
|
|
float prev_cdf = 0.0f;
|
|
float step_cdf = 1.0f;
|
|
float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; ; i++, step++) {
|
|
/* todo: optimize using binary search */
|
|
step_cdf = kernel_volume_channel_get(step->cdf_distance, channel);
|
|
|
|
if(xi < step_cdf || i == segment->numsteps-1)
|
|
break;
|
|
|
|
prev_cdf = step_cdf;
|
|
prev_t = step->t;
|
|
prev_cdf_distance = step->cdf_distance;
|
|
}
|
|
|
|
/* remap xi so we can reuse it */
|
|
xi = (xi - prev_cdf)/(step_cdf - prev_cdf);
|
|
|
|
/* pdf for picking step */
|
|
step_pdf_distance = step->cdf_distance - prev_cdf_distance;
|
|
}
|
|
|
|
/* determine range in which we will sample */
|
|
float step_t = step->t - prev_t;
|
|
|
|
/* sample distance and compute transmittance */
|
|
float3 distance_pdf;
|
|
sample_t = prev_t + kernel_volume_distance_sample(step_t, step->sigma_t, channel, xi, &transmittance, &distance_pdf);
|
|
|
|
/* modifiy pdf for hit/miss decision */
|
|
if(probalistic_scatter)
|
|
distance_pdf *= make_float3(1.0f, 1.0f, 1.0f) - segment->accum_transmittance;
|
|
|
|
pdf = average(distance_pdf * step_pdf_distance);
|
|
|
|
/* multiple importance sampling */
|
|
if(use_mis) {
|
|
float equi_pdf = kernel_volume_equiangular_pdf(ray, *light_P, sample_t);
|
|
mis_weight = 2.0f*power_heuristic(pdf, equi_pdf);
|
|
}
|
|
}
|
|
/* equi-angular sampling */
|
|
else {
|
|
/* sample distance */
|
|
sample_t = kernel_volume_equiangular_sample(ray, *light_P, xi, &pdf);
|
|
|
|
/* find step in which sampled distance is located */
|
|
step = segment->steps;
|
|
|
|
float prev_t = 0.0f;
|
|
float3 step_pdf_distance = make_float3(1.0f, 1.0f, 1.0f);
|
|
|
|
if(segment->numsteps > 1) {
|
|
/* todo: optimize using binary search */
|
|
float3 prev_cdf_distance = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
for(int i = 0; i < segment->numsteps-1; i++, step++) {
|
|
if(sample_t < step->t)
|
|
break;
|
|
|
|
prev_t = step->t;
|
|
prev_cdf_distance = step->cdf_distance;
|
|
}
|
|
|
|
/* pdf for picking step with distance sampling */
|
|
step_pdf_distance = step->cdf_distance - prev_cdf_distance;
|
|
}
|
|
|
|
/* determine range in which we will sample */
|
|
float step_t = step->t - prev_t;
|
|
float step_sample_t = sample_t - prev_t;
|
|
|
|
/* compute transmittance */
|
|
transmittance = volume_color_transmittance(step->sigma_t, step_sample_t);
|
|
|
|
/* multiple importance sampling */
|
|
if(use_mis) {
|
|
float3 distance_pdf3 = kernel_volume_distance_pdf(step_t, step->sigma_t, step_sample_t);
|
|
float distance_pdf = average(distance_pdf3 * step_pdf_distance);
|
|
mis_weight = 2.0f*power_heuristic(pdf, distance_pdf);
|
|
}
|
|
}
|
|
|
|
/* compute transmittance up to this step */
|
|
if(step != segment->steps)
|
|
transmittance *= (step-1)->accum_transmittance;
|
|
|
|
/* modify throughput */
|
|
*throughput *= step->sigma_s * transmittance * (mis_weight / pdf);
|
|
|
|
/* evaluate shader to create closures at shading point */
|
|
if(segment->numsteps > 1) {
|
|
sd->P = ray->P + step->shade_t*ray->D;
|
|
|
|
VolumeShaderCoefficients coeff;
|
|
volume_shader_sample(kg, sd, state, sd->P, &coeff);
|
|
}
|
|
|
|
/* move to new position */
|
|
sd->P = ray->P + sample_t*ray->D;
|
|
|
|
return VOLUME_PATH_SCATTERED;
|
|
}
|
|
|
|
/* decide if we need to use decoupled or not */
|
|
ccl_device bool kernel_volume_use_decoupled(KernelGlobals *kg, bool heterogeneous, bool direct, int sampling_method)
|
|
{
|
|
/* decoupled ray marching for heterogenous volumes not supported on the GPU,
|
|
* which also means equiangular and multiple importance sampling is not
|
|
* support for that case */
|
|
#ifdef __KERNEL_GPU__
|
|
if(heterogeneous)
|
|
return false;
|
|
#endif
|
|
|
|
/* equiangular and multiple importance sampling only implemented for decoupled */
|
|
if(sampling_method != 0)
|
|
return true;
|
|
|
|
/* for all light sampling use decoupled, reusing shader evaluations is
|
|
* typically faster in that case */
|
|
if(direct)
|
|
return kernel_data.integrator.sample_all_lights_direct;
|
|
else
|
|
return kernel_data.integrator.sample_all_lights_indirect;
|
|
}
|
|
|
|
/* Volume Stack
|
|
*
|
|
* This is an array of object/shared ID's that the current segment of the path
|
|
* is inside of. */
|
|
|
|
ccl_device void kernel_volume_stack_init(KernelGlobals *kg, VolumeStack *stack)
|
|
{
|
|
/* todo: this assumes camera is always in air, need to detect when it isn't */
|
|
if(kernel_data.background.volume_shader == SHADER_NONE) {
|
|
stack[0].shader = SHADER_NONE;
|
|
}
|
|
else {
|
|
stack[0].shader = kernel_data.background.volume_shader;
|
|
stack[0].object = PRIM_NONE;
|
|
stack[1].shader = SHADER_NONE;
|
|
}
|
|
}
|
|
|
|
ccl_device void kernel_volume_stack_enter_exit(KernelGlobals *kg, ShaderData *sd, VolumeStack *stack)
|
|
{
|
|
/* todo: we should have some way for objects to indicate if they want the
|
|
* world shader to work inside them. excluding it by default is problematic
|
|
* because non-volume objects can't be assumed to be closed manifolds */
|
|
|
|
if(!(sd->flag & SD_HAS_VOLUME))
|
|
return;
|
|
|
|
if(sd->flag & SD_BACKFACING) {
|
|
/* exit volume object: remove from stack */
|
|
for(int i = 0; stack[i].shader != SHADER_NONE; i++) {
|
|
if(stack[i].object == sd->object) {
|
|
/* shift back next stack entries */
|
|
do {
|
|
stack[i] = stack[i+1];
|
|
i++;
|
|
}
|
|
while(stack[i].shader != SHADER_NONE);
|
|
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* enter volume object: add to stack */
|
|
int i;
|
|
|
|
for(i = 0; stack[i].shader != SHADER_NONE; i++) {
|
|
/* already in the stack? then we have nothing to do */
|
|
if(stack[i].object == sd->object)
|
|
return;
|
|
}
|
|
|
|
/* if we exceed the stack limit, ignore */
|
|
if(i >= VOLUME_STACK_SIZE-1)
|
|
return;
|
|
|
|
/* add to the end of the stack */
|
|
stack[i].shader = sd->shader;
|
|
stack[i].object = sd->object;
|
|
stack[i+1].shader = SHADER_NONE;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|