blender/intern/cycles/kernel/kernel_montecarlo.h
Brecht Van Lommel 9b8dae71a5 Cycles: support for environment texture "Mirror Ball" projection mode, next to
existing "Equirectangular". This projection is useful to create light probes
from a chrome ball placed in a real scene. It expects as input a photograph of
the chrome ball, cropped so the ball just fits inside the image boundaries.

Example setup with panorama camera and mixing two (poor quality) photographs
from different viewpoints to avoid stretching and hide the photographer:
http://www.pasteall.org/pic/28036
2012-03-08 19:52:58 +00:00

263 lines
6.5 KiB
C

/*
* Parts adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __KERNEL_MONTECARLO_CL__
#define __KERNEL_MONTECARLO_CL__
CCL_NAMESPACE_BEGIN
/// Given values x and y on [0,1], convert them in place to values on
/// [-1,1] uniformly distributed over a unit sphere. This code is
/// derived from Peter Shirley, "Realistic Ray Tracing", p. 103.
__device void to_unit_disk(float *x, float *y)
{
float r, phi;
float a = 2.0f * (*x) - 1.0f;
float b = 2.0f * (*y) - 1.0f;
if(a > -b) {
if(a > b) {
r = a;
phi = M_PI_4_F *(b/a);
} else {
r = b;
phi = M_PI_4_F *(2.0f - a/b);
}
} else {
if(a < b) {
r = -a;
phi = M_PI_4_F *(4.0f + b/a);
} else {
r = -b;
if(b != 0.0f)
phi = M_PI_4_F *(6.0f - a/b);
else
phi = 0.0f;
}
}
*x = r * cosf(phi);
*y = r * sinf(phi);
}
__device void make_orthonormals_tangent(const float3 N, const float3 T, float3 *a, float3 *b)
{
*b = cross(N, T);
*a = cross(*b, N);
}
__device_inline void sample_cos_hemisphere(const float3 N,
float randu, float randv, float3 *omega_in, float *pdf)
{
// Default closure BSDF implementation: uniformly sample
// cosine-weighted hemisphere above the point.
to_unit_disk(&randu, &randv);
float costheta = sqrtf(max(1.0f - randu * randu - randv * randv, 0.0f));
float3 T, B;
make_orthonormals(N, &T, &B);
*omega_in = randu * T + randv * B + costheta * N;
*pdf = costheta *M_1_PI_F;
}
__device_inline void sample_uniform_hemisphere(const float3 N,
float randu, float randv,
float3 *omega_in, float *pdf)
{
float z = randu;
float r = sqrtf(max(0.f, 1.f - z*z));
float phi = 2.f * M_PI_F * randv;
float x = r * cosf(phi);
float y = r * sinf(phi);
float3 T, B;
make_orthonormals (N, &T, &B);
*omega_in = x * T + y * B + z * N;
*pdf = 0.5f * M_1_PI_F;
}
__device float3 sample_uniform_sphere(float u1, float u2)
{
float z = 1.0f - 2.0f*u1;
float r = sqrtf(fmaxf(0.0f, 1.0f - z*z));
float phi = 2.0f*M_PI_F*u2;
float x = r*cosf(phi);
float y = r*sinf(phi);
return make_float3(x, y, z);
}
__device float power_heuristic(float a, float b)
{
return (a*a)/(a*a + b*b);
}
__device float2 concentric_sample_disk(float u1, float u2)
{
float r, theta;
// Map uniform random numbers to $[-1,1]^2$
float sx = 2 * u1 - 1;
float sy = 2 * u2 - 1;
// Map square to $(r,\theta)$
// Handle degeneracy at the origin
if(sx == 0.0f && sy == 0.0f) {
return make_float2(0.0f, 0.0f);
}
if(sx >= -sy) {
if(sx > sy) {
// Handle first region of disk
r = sx;
if(sy > 0.0f) theta = sy/r;
else theta = 8.0f + sy/r;
}
else {
// Handle second region of disk
r = sy;
theta = 2.0f - sx/r;
}
}
else {
if(sx <= sy) {
// Handle third region of disk
r = -sx;
theta = 4.0f - sy/r;
}
else {
// Handle fourth region of disk
r = -sy;
theta = 6.0f + sx/r;
}
}
theta *= M_PI_4_F;
return make_float2(r * cosf(theta), r * sinf(theta));
}
__device float2 regular_polygon_sample(float corners, float rotation, float u, float v)
{
/* sample corner number and reuse u */
float corner = floorf(u*corners);
u = u*corners - corner;
/* uniform sampled triangle weights */
u = sqrtf(u);
v = v*u;
u = 1.0f - u;
/* point in triangle */
float angle = M_PI_F/corners;
float2 p = make_float2((u + v)*cosf(angle), (u - v)*sinf(angle));
/* rotate */
rotation += corner*2.0f*angle;
float cr = cosf(rotation);
float sr = sinf(rotation);
return make_float2(cr*p.x - sr*p.y, sr*p.x + cr*p.y);
}
/* Spherical coordinates <-> Cartesian direction */
__device float2 direction_to_spherical(float3 dir)
{
float theta = acosf(dir.z);
float phi = atan2f(dir.x, dir.y);
return make_float2(theta, phi);
}
__device float3 spherical_to_direction(float theta, float phi)
{
return make_float3(
sinf(theta)*cosf(phi),
sinf(theta)*sinf(phi),
cosf(theta));
}
/* Equirectangular coordinates <-> Cartesian direction */
__device float2 direction_to_equirectangular(float3 dir)
{
float u = -atan2f(dir.y, dir.x)/(2.0f*M_PI_F) + 0.5f;
float v = atan2f(dir.z, hypotf(dir.x, dir.y))/M_PI_F + 0.5f;
return make_float2(u, v);
}
__device float3 equirectangular_to_direction(float u, float v)
{
float phi = M_PI_F*(1.0f - 2.0f*u);
float theta = M_PI_F*(1.0f - v);
return make_float3(
sin(theta)*cos(phi),
sin(theta)*sin(phi),
cos(theta));
}
/* Mirror Ball <-> Cartesion direction */
__device float3 mirrorball_to_direction(float u, float v)
{
/* point on sphere */
float3 dir;
dir.x = 2.0f*u - 1.0f;
dir.z = 2.0f*v - 1.0f;
dir.y = -sqrt(max(1.0f - dir.x*dir.x - dir.z*dir.z, 0.0f));
/* reflection */
float3 I = make_float3(0.0f, -1.0f, 0.0f);
return 2.0f*dot(dir, I)*dir - I;
}
__device float2 direction_to_mirrorball(float3 dir)
{
/* inverse of mirrorball_to_direction */
dir.y -= 1.0f;
float div = 2.0f*sqrt(max(-0.5f*dir.y, 0.0f));
if(div > 0.0f)
dir /= div;
float u = 0.5f*(dir.x + 1.0f);
float v = 0.5f*(dir.z + 1.0f);
return make_float2(u, v);
}
CCL_NAMESPACE_END
#endif /* __KERNEL_MONTECARLO_CL__ */