blender/intern/cycles/render/graph.cpp
Lukas Stockner e760972221 Cycles: support for custom shader AOVs
Custom render passes are added in the Shader AOVs panel in the view layer
settings, with a name and data type. In shader nodes, an AOV Output node
is then used to output either a value or color to the pass.

Arbitrary names can be used for these passes, as long as they don't conflict
with built-in passes that are enabled. The AOV Output node can be used in both
material and world shader nodes.

Implemented by Lukas, with tweaks by Brecht.

Differential Revision: https://developer.blender.org/D4837
2019-12-10 20:44:46 +01:00

1237 lines
34 KiB
C++

/*
* Copyright 2011-2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "render/attribute.h"
#include "render/graph.h"
#include "render/nodes.h"
#include "render/scene.h"
#include "render/shader.h"
#include "render/constant_fold.h"
#include "util/util_algorithm.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
#include "util/util_queue.h"
CCL_NAMESPACE_BEGIN
namespace {
bool check_node_inputs_has_links(const ShaderNode *node)
{
foreach (const ShaderInput *in, node->inputs) {
if (in->link) {
return true;
}
}
return false;
}
bool check_node_inputs_traversed(const ShaderNode *node, const ShaderNodeSet &done)
{
foreach (const ShaderInput *in, node->inputs) {
if (in->link) {
if (done.find(in->link->parent) == done.end()) {
return false;
}
}
}
return true;
}
} /* namespace */
/* Sockets */
void ShaderInput::disconnect()
{
if (link) {
link->links.erase(remove(link->links.begin(), link->links.end(), this), link->links.end());
}
link = NULL;
}
void ShaderOutput::disconnect()
{
foreach (ShaderInput *sock, links) {
sock->link = NULL;
}
links.clear();
}
/* Node */
ShaderNode::ShaderNode(const NodeType *type) : Node(type)
{
name = type->name;
id = -1;
bump = SHADER_BUMP_NONE;
special_type = SHADER_SPECIAL_TYPE_NONE;
create_inputs_outputs(type);
}
ShaderNode::~ShaderNode()
{
foreach (ShaderInput *socket, inputs)
delete socket;
foreach (ShaderOutput *socket, outputs)
delete socket;
}
void ShaderNode::create_inputs_outputs(const NodeType *type)
{
foreach (const SocketType &socket, type->inputs) {
if (socket.flags & SocketType::LINKABLE) {
inputs.push_back(new ShaderInput(socket, this));
}
}
foreach (const SocketType &socket, type->outputs) {
outputs.push_back(new ShaderOutput(socket, this));
}
}
ShaderInput *ShaderNode::input(const char *name)
{
foreach (ShaderInput *socket, inputs) {
if (socket->name() == name)
return socket;
}
return NULL;
}
ShaderOutput *ShaderNode::output(const char *name)
{
foreach (ShaderOutput *socket, outputs)
if (socket->name() == name)
return socket;
return NULL;
}
ShaderInput *ShaderNode::input(ustring name)
{
foreach (ShaderInput *socket, inputs) {
if (socket->name() == name)
return socket;
}
return NULL;
}
ShaderOutput *ShaderNode::output(ustring name)
{
foreach (ShaderOutput *socket, outputs)
if (socket->name() == name)
return socket;
return NULL;
}
void ShaderNode::remove_input(ShaderInput *input)
{
assert(input->link == NULL);
delete input;
inputs.erase(remove(inputs.begin(), inputs.end(), input), inputs.end());
}
void ShaderNode::attributes(Shader *shader, AttributeRequestSet *attributes)
{
foreach (ShaderInput *input, inputs) {
if (!input->link) {
if (input->flags() & SocketType::LINK_TEXTURE_GENERATED) {
if (shader->has_surface)
attributes->add(ATTR_STD_GENERATED);
if (shader->has_volume)
attributes->add(ATTR_STD_GENERATED_TRANSFORM);
}
else if (input->flags() & SocketType::LINK_TEXTURE_UV) {
if (shader->has_surface)
attributes->add(ATTR_STD_UV);
}
}
}
}
bool ShaderNode::equals(const ShaderNode &other)
{
if (type != other.type || bump != other.bump) {
return false;
}
assert(inputs.size() == other.inputs.size());
/* Compare unlinkable sockets */
foreach (const SocketType &socket, type->inputs) {
if (!(socket.flags & SocketType::LINKABLE)) {
if (!Node::equals_value(other, socket)) {
return false;
}
}
}
/* Compare linkable input sockets */
for (int i = 0; i < inputs.size(); ++i) {
ShaderInput *input_a = inputs[i], *input_b = other.inputs[i];
if (input_a->link == NULL && input_b->link == NULL) {
/* Unconnected inputs are expected to have the same value. */
if (!Node::equals_value(other, input_a->socket_type)) {
return false;
}
}
else if (input_a->link != NULL && input_b->link != NULL) {
/* Expect links are to come from the same exact socket. */
if (input_a->link != input_b->link) {
return false;
}
}
else {
/* One socket has a link and another has not, inputs can't be
* considered equal.
*/
return false;
}
}
return true;
}
/* Graph */
ShaderGraph::ShaderGraph()
{
finalized = false;
simplified = false;
num_node_ids = 0;
add(new OutputNode());
}
ShaderGraph::~ShaderGraph()
{
clear_nodes();
}
ShaderNode *ShaderGraph::add(ShaderNode *node)
{
assert(!finalized);
simplified = false;
node->id = num_node_ids++;
nodes.push_back(node);
return node;
}
OutputNode *ShaderGraph::output()
{
return (OutputNode *)nodes.front();
}
void ShaderGraph::connect(ShaderOutput *from, ShaderInput *to)
{
assert(!finalized);
assert(from && to);
if (to->link) {
fprintf(stderr, "Cycles shader graph connect: input already connected.\n");
return;
}
if (from->type() != to->type()) {
/* can't do automatic conversion from closure */
if (from->type() == SocketType::CLOSURE) {
fprintf(stderr,
"Cycles shader graph connect: can only connect closure to closure "
"(%s.%s to %s.%s).\n",
from->parent->name.c_str(),
from->name().c_str(),
to->parent->name.c_str(),
to->name().c_str());
return;
}
/* add automatic conversion node in case of type mismatch */
ShaderNode *convert;
ShaderInput *convert_in;
if (to->type() == SocketType::CLOSURE) {
EmissionNode *emission = new EmissionNode();
emission->color = make_float3(1.0f, 1.0f, 1.0f);
emission->strength = 1.0f;
convert = add(emission);
/* Connect float inputs to Strength to save an additional Falue->Color conversion. */
if (from->type() == SocketType::FLOAT) {
convert_in = convert->input("Strength");
}
else {
convert_in = convert->input("Color");
}
}
else {
convert = add(new ConvertNode(from->type(), to->type(), true));
convert_in = convert->inputs[0];
}
connect(from, convert_in);
connect(convert->outputs[0], to);
}
else {
/* types match, just connect */
to->link = from;
from->links.push_back(to);
}
}
void ShaderGraph::disconnect(ShaderOutput *from)
{
assert(!finalized);
simplified = false;
from->disconnect();
}
void ShaderGraph::disconnect(ShaderInput *to)
{
assert(!finalized);
assert(to->link);
simplified = false;
to->disconnect();
}
void ShaderGraph::relink(ShaderInput *from, ShaderInput *to)
{
ShaderOutput *out = from->link;
if (out) {
disconnect(from);
connect(out, to);
}
to->parent->copy_value(to->socket_type, *(from->parent), from->socket_type);
}
void ShaderGraph::relink(ShaderOutput *from, ShaderOutput *to)
{
/* Copy because disconnect modifies this list. */
vector<ShaderInput *> outputs = from->links;
foreach (ShaderInput *sock, outputs) {
disconnect(sock);
if (to)
connect(to, sock);
}
}
void ShaderGraph::relink(ShaderNode *node, ShaderOutput *from, ShaderOutput *to)
{
simplified = false;
/* Copy because disconnect modifies this list */
vector<ShaderInput *> outputs = from->links;
/* Bypass node by moving all links from "from" to "to" */
foreach (ShaderInput *sock, node->inputs) {
if (sock->link)
disconnect(sock);
}
foreach (ShaderInput *sock, outputs) {
disconnect(sock);
if (to)
connect(to, sock);
}
}
void ShaderGraph::simplify(Scene *scene)
{
if (!simplified) {
expand();
default_inputs(scene->shader_manager->use_osl());
clean(scene);
refine_bump_nodes();
simplified = true;
}
}
void ShaderGraph::finalize(Scene *scene, bool do_bump, bool do_simplify, bool bump_in_object_space)
{
/* before compiling, the shader graph may undergo a number of modifications.
* currently we set default geometry shader inputs, and create automatic bump
* from displacement. a graph can be finalized only once, and should not be
* modified afterwards. */
if (!finalized) {
simplify(scene);
if (do_bump)
bump_from_displacement(bump_in_object_space);
ShaderInput *surface_in = output()->input("Surface");
ShaderInput *volume_in = output()->input("Volume");
/* todo: make this work when surface and volume closures are tangled up */
if (surface_in->link)
transform_multi_closure(surface_in->link->parent, NULL, false);
if (volume_in->link)
transform_multi_closure(volume_in->link->parent, NULL, true);
finalized = true;
}
else if (do_simplify) {
simplify_settings(scene);
}
}
void ShaderGraph::find_dependencies(ShaderNodeSet &dependencies, ShaderInput *input)
{
/* find all nodes that this input depends on directly and indirectly */
ShaderNode *node = (input->link) ? input->link->parent : NULL;
if (node != NULL && dependencies.find(node) == dependencies.end()) {
foreach (ShaderInput *in, node->inputs)
find_dependencies(dependencies, in);
dependencies.insert(node);
}
}
void ShaderGraph::clear_nodes()
{
foreach (ShaderNode *node, nodes) {
delete node;
}
nodes.clear();
}
void ShaderGraph::copy_nodes(ShaderNodeSet &nodes, ShaderNodeMap &nnodemap)
{
/* copy a set of nodes, and the links between them. the assumption is
* made that all nodes that inputs are linked to are in the set too. */
/* copy nodes */
foreach (ShaderNode *node, nodes) {
ShaderNode *nnode = node->clone();
nnodemap[node] = nnode;
/* create new inputs and outputs to recreate links and ensure
* that we still point to valid SocketType if the NodeType
* changed in cloning, as it does for OSL nodes */
nnode->inputs.clear();
nnode->outputs.clear();
nnode->create_inputs_outputs(nnode->type);
}
/* recreate links */
foreach (ShaderNode *node, nodes) {
foreach (ShaderInput *input, node->inputs) {
if (input->link) {
/* find new input and output */
ShaderNode *nfrom = nnodemap[input->link->parent];
ShaderNode *nto = nnodemap[input->parent];
ShaderOutput *noutput = nfrom->output(input->link->name());
ShaderInput *ninput = nto->input(input->name());
/* connect */
connect(noutput, ninput);
}
}
}
}
/* Graph simplification */
/* ******************** */
/* Remove proxy nodes.
*
* These only exists temporarily when exporting groups, and we must remove them
* early so that node->attributes() and default links do not see them.
*/
void ShaderGraph::remove_proxy_nodes()
{
vector<bool> removed(num_node_ids, false);
bool any_node_removed = false;
foreach (ShaderNode *node, nodes) {
if (node->special_type == SHADER_SPECIAL_TYPE_PROXY) {
ConvertNode *proxy = static_cast<ConvertNode *>(node);
ShaderInput *input = proxy->inputs[0];
ShaderOutput *output = proxy->outputs[0];
/* bypass the proxy node */
if (input->link) {
relink(proxy, output, input->link);
}
else {
/* Copy because disconnect modifies this list */
vector<ShaderInput *> links(output->links);
foreach (ShaderInput *to, links) {
/* remove any autoconvert nodes too if they lead to
* sockets with an automatically set default value */
ShaderNode *tonode = to->parent;
if (tonode->special_type == SHADER_SPECIAL_TYPE_AUTOCONVERT) {
bool all_links_removed = true;
vector<ShaderInput *> links = tonode->outputs[0]->links;
foreach (ShaderInput *autoin, links) {
if (autoin->flags() & SocketType::DEFAULT_LINK_MASK)
disconnect(autoin);
else
all_links_removed = false;
}
if (all_links_removed)
removed[tonode->id] = true;
}
disconnect(to);
/* transfer the default input value to the target socket */
tonode->copy_value(to->socket_type, *proxy, input->socket_type);
}
}
removed[proxy->id] = true;
any_node_removed = true;
}
}
/* remove nodes */
if (any_node_removed) {
list<ShaderNode *> newnodes;
foreach (ShaderNode *node, nodes) {
if (!removed[node->id])
newnodes.push_back(node);
else
delete node;
}
nodes = newnodes;
}
}
/* Constant folding.
*
* Try to constant fold some nodes, and pipe result directly to
* the input socket of connected nodes.
*/
void ShaderGraph::constant_fold(Scene *scene)
{
ShaderNodeSet done, scheduled;
queue<ShaderNode *> traverse_queue;
bool has_displacement = (output()->input("Displacement")->link != NULL);
/* Schedule nodes which doesn't have any dependencies. */
foreach (ShaderNode *node, nodes) {
if (!check_node_inputs_has_links(node)) {
traverse_queue.push(node);
scheduled.insert(node);
}
}
while (!traverse_queue.empty()) {
ShaderNode *node = traverse_queue.front();
traverse_queue.pop();
done.insert(node);
foreach (ShaderOutput *output, node->outputs) {
if (output->links.size() == 0) {
continue;
}
/* Schedule node which was depending on the value,
* when possible. Do it before disconnect.
*/
foreach (ShaderInput *input, output->links) {
if (scheduled.find(input->parent) != scheduled.end()) {
/* Node might not be optimized yet but scheduled already
* by other dependencies. No need to re-schedule it.
*/
continue;
}
/* Schedule node if its inputs are fully done. */
if (check_node_inputs_traversed(input->parent, done)) {
traverse_queue.push(input->parent);
scheduled.insert(input->parent);
}
}
/* Optimize current node. */
ConstantFolder folder(this, node, output, scene);
node->constant_fold(folder);
}
}
/* Folding might have removed all nodes connected to the displacement output
* even tho there is displacement to be applied, so add in a value node if
* that happens to ensure there is still a valid graph for displacement.
*/
if (has_displacement && !output()->input("Displacement")->link) {
ColorNode *value = (ColorNode *)add(new ColorNode());
value->value = output()->displacement;
connect(value->output("Color"), output()->input("Displacement"));
}
}
/* Simplification. */
void ShaderGraph::simplify_settings(Scene *scene)
{
foreach (ShaderNode *node, nodes) {
node->simplify_settings(scene);
}
}
/* Deduplicate nodes with same settings. */
void ShaderGraph::deduplicate_nodes()
{
/* NOTES:
* - Deduplication happens for nodes which has same exact settings and same
* exact input links configuration (either connected to same output or has
* the same exact default value).
* - Deduplication happens in the bottom-top manner, so we know for fact that
* all traversed nodes are either can not be deduplicated at all or were
* already deduplicated.
*/
ShaderNodeSet scheduled, done;
map<ustring, ShaderNodeSet> candidates;
queue<ShaderNode *> traverse_queue;
int num_deduplicated = 0;
/* Schedule nodes which doesn't have any dependencies. */
foreach (ShaderNode *node, nodes) {
if (!check_node_inputs_has_links(node)) {
traverse_queue.push(node);
scheduled.insert(node);
}
}
while (!traverse_queue.empty()) {
ShaderNode *node = traverse_queue.front();
traverse_queue.pop();
done.insert(node);
/* Schedule the nodes which were depending on the current node. */
bool has_output_links = false;
foreach (ShaderOutput *output, node->outputs) {
foreach (ShaderInput *input, output->links) {
has_output_links = true;
if (scheduled.find(input->parent) != scheduled.end()) {
/* Node might not be optimized yet but scheduled already
* by other dependencies. No need to re-schedule it.
*/
continue;
}
/* Schedule node if its inputs are fully done. */
if (check_node_inputs_traversed(input->parent, done)) {
traverse_queue.push(input->parent);
scheduled.insert(input->parent);
}
}
}
/* Only need to care about nodes that are actually used */
if (!has_output_links) {
continue;
}
/* Try to merge this node with another one. */
ShaderNode *merge_with = NULL;
foreach (ShaderNode *other_node, candidates[node->type->name]) {
if (node != other_node && node->equals(*other_node)) {
merge_with = other_node;
break;
}
}
/* If found an equivalent, merge; otherwise keep node for later merges */
if (merge_with != NULL) {
for (int i = 0; i < node->outputs.size(); ++i) {
relink(node, node->outputs[i], merge_with->outputs[i]);
}
num_deduplicated++;
}
else {
candidates[node->type->name].insert(node);
}
}
if (num_deduplicated > 0) {
VLOG(1) << "Deduplicated " << num_deduplicated << " nodes.";
}
}
/* Check whether volume output has meaningful nodes, otherwise
* disconnect the output.
*/
void ShaderGraph::verify_volume_output()
{
/* Check whether we can optimize the whole volume graph out. */
ShaderInput *volume_in = output()->input("Volume");
if (volume_in->link == NULL) {
return;
}
bool has_valid_volume = false;
ShaderNodeSet scheduled;
queue<ShaderNode *> traverse_queue;
/* Schedule volume output. */
traverse_queue.push(volume_in->link->parent);
scheduled.insert(volume_in->link->parent);
/* Traverse down the tree. */
while (!traverse_queue.empty()) {
ShaderNode *node = traverse_queue.front();
traverse_queue.pop();
/* Node is fully valid for volume, can't optimize anything out. */
if (node->has_volume_support()) {
has_valid_volume = true;
break;
}
foreach (ShaderInput *input, node->inputs) {
if (input->link == NULL) {
continue;
}
if (scheduled.find(input->link->parent) != scheduled.end()) {
continue;
}
traverse_queue.push(input->link->parent);
scheduled.insert(input->link->parent);
}
}
if (!has_valid_volume) {
VLOG(1) << "Disconnect meaningless volume output.";
disconnect(volume_in->link);
}
}
void ShaderGraph::break_cycles(ShaderNode *node, vector<bool> &visited, vector<bool> &on_stack)
{
visited[node->id] = true;
on_stack[node->id] = true;
foreach (ShaderInput *input, node->inputs) {
if (input->link) {
ShaderNode *depnode = input->link->parent;
if (on_stack[depnode->id]) {
/* break cycle */
disconnect(input);
fprintf(stderr, "Cycles shader graph: detected cycle in graph, connection removed.\n");
}
else if (!visited[depnode->id]) {
/* visit dependencies */
break_cycles(depnode, visited, on_stack);
}
}
}
on_stack[node->id] = false;
}
void ShaderGraph::compute_displacement_hash()
{
/* Compute hash of all nodes linked to displacement, to detect if we need
* to recompute displacement when shader nodes change. */
ShaderInput *displacement_in = output()->input("Displacement");
if (!displacement_in->link) {
displacement_hash = "";
return;
}
ShaderNodeSet nodes_displace;
find_dependencies(nodes_displace, displacement_in);
MD5Hash md5;
foreach (ShaderNode *node, nodes_displace) {
node->hash(md5);
foreach (ShaderInput *input, node->inputs) {
int link_id = (input->link) ? input->link->parent->id : 0;
md5.append((uint8_t *)&link_id, sizeof(link_id));
}
if (node->special_type == SHADER_SPECIAL_TYPE_OSL) {
/* Hash takes into account socket values, to detect changes
* in the code of the node we need an exception. */
OSLNode *oslnode = static_cast<OSLNode *>(node);
md5.append(oslnode->bytecode_hash);
}
}
displacement_hash = md5.get_hex();
}
void ShaderGraph::clean(Scene *scene)
{
/* Graph simplification */
/* NOTE: Remove proxy nodes was already done. */
constant_fold(scene);
simplify_settings(scene);
deduplicate_nodes();
verify_volume_output();
/* we do two things here: find cycles and break them, and remove unused
* nodes that don't feed into the output. how cycles are broken is
* undefined, they are invalid input, the important thing is to not crash */
vector<bool> visited(num_node_ids, false);
vector<bool> on_stack(num_node_ids, false);
/* break cycles */
break_cycles(output(), visited, on_stack);
foreach (ShaderNode *node, nodes) {
if (node->special_type == SHADER_SPECIAL_TYPE_OUTPUT_AOV) {
break_cycles(node, visited, on_stack);
}
}
/* disconnect unused nodes */
foreach (ShaderNode *node, nodes) {
if (!visited[node->id]) {
foreach (ShaderInput *to, node->inputs) {
ShaderOutput *from = to->link;
if (from) {
to->link = NULL;
from->links.erase(remove(from->links.begin(), from->links.end(), to), from->links.end());
}
}
}
}
/* remove unused nodes */
list<ShaderNode *> newnodes;
foreach (ShaderNode *node, nodes) {
if (visited[node->id])
newnodes.push_back(node);
else
delete node;
}
nodes = newnodes;
}
void ShaderGraph::expand()
{
/* Call expand on all nodes, to generate additional nodes. */
foreach (ShaderNode *node, nodes) {
node->expand(this);
}
}
void ShaderGraph::default_inputs(bool do_osl)
{
/* nodes can specify default texture coordinates, for now we give
* everything the position by default, except for the sky texture */
ShaderNode *geom = NULL;
ShaderNode *texco = NULL;
foreach (ShaderNode *node, nodes) {
foreach (ShaderInput *input, node->inputs) {
if (!input->link && (!(input->flags() & SocketType::OSL_INTERNAL) || do_osl)) {
if (input->flags() & SocketType::LINK_TEXTURE_GENERATED) {
if (!texco)
texco = new TextureCoordinateNode();
connect(texco->output("Generated"), input);
}
if (input->flags() & SocketType::LINK_TEXTURE_NORMAL) {
if (!texco)
texco = new TextureCoordinateNode();
connect(texco->output("Normal"), input);
}
else if (input->flags() & SocketType::LINK_TEXTURE_UV) {
if (!texco)
texco = new TextureCoordinateNode();
connect(texco->output("UV"), input);
}
else if (input->flags() & SocketType::LINK_INCOMING) {
if (!geom)
geom = new GeometryNode();
connect(geom->output("Incoming"), input);
}
else if (input->flags() & SocketType::LINK_NORMAL) {
if (!geom)
geom = new GeometryNode();
connect(geom->output("Normal"), input);
}
else if (input->flags() & SocketType::LINK_POSITION) {
if (!geom)
geom = new GeometryNode();
connect(geom->output("Position"), input);
}
else if (input->flags() & SocketType::LINK_TANGENT) {
if (!geom)
geom = new GeometryNode();
connect(geom->output("Tangent"), input);
}
}
}
}
if (geom)
add(geom);
if (texco)
add(texco);
}
void ShaderGraph::refine_bump_nodes()
{
/* we transverse the node graph looking for bump nodes, when we find them,
* like in bump_from_displacement(), we copy the sub-graph defined from "bump"
* input to the inputs "center","dx" and "dy" What is in "bump" input is moved
* to "center" input. */
foreach (ShaderNode *node, nodes) {
if (node->special_type == SHADER_SPECIAL_TYPE_BUMP && node->input("Height")->link) {
ShaderInput *bump_input = node->input("Height");
ShaderNodeSet nodes_bump;
/* make 2 extra copies of the subgraph defined in Bump input */
ShaderNodeMap nodes_dx;
ShaderNodeMap nodes_dy;
/* find dependencies for the given input */
find_dependencies(nodes_bump, bump_input);
copy_nodes(nodes_bump, nodes_dx);
copy_nodes(nodes_bump, nodes_dy);
/* mark nodes to indicate they are use for bump computation, so
that any texture coordinates are shifted by dx/dy when sampling */
foreach (ShaderNode *node, nodes_bump)
node->bump = SHADER_BUMP_CENTER;
foreach (NodePair &pair, nodes_dx)
pair.second->bump = SHADER_BUMP_DX;
foreach (NodePair &pair, nodes_dy)
pair.second->bump = SHADER_BUMP_DY;
ShaderOutput *out = bump_input->link;
ShaderOutput *out_dx = nodes_dx[out->parent]->output(out->name());
ShaderOutput *out_dy = nodes_dy[out->parent]->output(out->name());
connect(out_dx, node->input("SampleX"));
connect(out_dy, node->input("SampleY"));
/* add generated nodes */
foreach (NodePair &pair, nodes_dx)
add(pair.second);
foreach (NodePair &pair, nodes_dy)
add(pair.second);
/* connect what is connected is bump to samplecenter input*/
connect(out, node->input("SampleCenter"));
/* bump input is just for connectivity purpose for the graph input,
* we re-connected this input to samplecenter, so lets disconnect it
* from bump input */
disconnect(bump_input);
}
}
}
void ShaderGraph::bump_from_displacement(bool use_object_space)
{
/* generate bump mapping automatically from displacement. bump mapping is
* done using a 3-tap filter, computing the displacement at the center,
* and two other positions shifted by ray differentials.
*
* since the input to displacement is a node graph, we need to ensure that
* all texture coordinates use are shift by the ray differentials. for this
* reason we make 3 copies of the node subgraph defining the displacement,
* with each different geometry and texture coordinate nodes that generate
* different shifted coordinates.
*
* these 3 displacement values are then fed into the bump node, which will
* output the perturbed normal. */
ShaderInput *displacement_in = output()->input("Displacement");
if (!displacement_in->link)
return;
/* find dependencies for the given input */
ShaderNodeSet nodes_displace;
find_dependencies(nodes_displace, displacement_in);
/* copy nodes for 3 bump samples */
ShaderNodeMap nodes_center;
ShaderNodeMap nodes_dx;
ShaderNodeMap nodes_dy;
copy_nodes(nodes_displace, nodes_center);
copy_nodes(nodes_displace, nodes_dx);
copy_nodes(nodes_displace, nodes_dy);
/* mark nodes to indicate they are use for bump computation, so
* that any texture coordinates are shifted by dx/dy when sampling */
foreach (NodePair &pair, nodes_center)
pair.second->bump = SHADER_BUMP_CENTER;
foreach (NodePair &pair, nodes_dx)
pair.second->bump = SHADER_BUMP_DX;
foreach (NodePair &pair, nodes_dy)
pair.second->bump = SHADER_BUMP_DY;
/* add set normal node and connect the bump normal output to the set normal
* output, so it can finally set the shader normal, note we are only doing
* this for bump from displacement, this will be the only bump allowed to
* overwrite the shader normal */
ShaderNode *set_normal = add(new SetNormalNode());
/* add bump node and connect copied graphs to it */
BumpNode *bump = (BumpNode *)add(new BumpNode());
bump->use_object_space = use_object_space;
bump->distance = 1.0f;
ShaderOutput *out = displacement_in->link;
ShaderOutput *out_center = nodes_center[out->parent]->output(out->name());
ShaderOutput *out_dx = nodes_dx[out->parent]->output(out->name());
ShaderOutput *out_dy = nodes_dy[out->parent]->output(out->name());
/* convert displacement vector to height */
VectorMathNode *dot_center = (VectorMathNode *)add(new VectorMathNode());
VectorMathNode *dot_dx = (VectorMathNode *)add(new VectorMathNode());
VectorMathNode *dot_dy = (VectorMathNode *)add(new VectorMathNode());
dot_center->type = NODE_VECTOR_MATH_DOT_PRODUCT;
dot_dx->type = NODE_VECTOR_MATH_DOT_PRODUCT;
dot_dy->type = NODE_VECTOR_MATH_DOT_PRODUCT;
GeometryNode *geom = (GeometryNode *)add(new GeometryNode());
connect(geom->output("Normal"), dot_center->input("Vector2"));
connect(geom->output("Normal"), dot_dx->input("Vector2"));
connect(geom->output("Normal"), dot_dy->input("Vector2"));
connect(out_center, dot_center->input("Vector1"));
connect(out_dx, dot_dx->input("Vector1"));
connect(out_dy, dot_dy->input("Vector1"));
connect(dot_center->output("Value"), bump->input("SampleCenter"));
connect(dot_dx->output("Value"), bump->input("SampleX"));
connect(dot_dy->output("Value"), bump->input("SampleY"));
/* connect the bump out to the set normal in: */
connect(bump->output("Normal"), set_normal->input("Direction"));
/* connect to output node */
connect(set_normal->output("Normal"), output()->input("Normal"));
/* finally, add the copied nodes to the graph. we can't do this earlier
* because we would create dependency cycles in the above loop */
foreach (NodePair &pair, nodes_center)
add(pair.second);
foreach (NodePair &pair, nodes_dx)
add(pair.second);
foreach (NodePair &pair, nodes_dy)
add(pair.second);
}
void ShaderGraph::transform_multi_closure(ShaderNode *node, ShaderOutput *weight_out, bool volume)
{
/* for SVM in multi closure mode, this transforms the shader mix/add part of
* the graph into nodes that feed weights into closure nodes. this is too
* avoid building a closure tree and then flattening it, and instead write it
* directly to an array */
if (node->special_type == SHADER_SPECIAL_TYPE_COMBINE_CLOSURE) {
ShaderInput *fin = node->input("Fac");
ShaderInput *cl1in = node->input("Closure1");
ShaderInput *cl2in = node->input("Closure2");
ShaderOutput *weight1_out, *weight2_out;
if (fin) {
/* mix closure: add node to mix closure weights */
MixClosureWeightNode *mix_node = new MixClosureWeightNode();
add(mix_node);
ShaderInput *fac_in = mix_node->input("Fac");
ShaderInput *weight_in = mix_node->input("Weight");
if (fin->link)
connect(fin->link, fac_in);
else
mix_node->fac = node->get_float(fin->socket_type);
if (weight_out)
connect(weight_out, weight_in);
weight1_out = mix_node->output("Weight1");
weight2_out = mix_node->output("Weight2");
}
else {
/* add closure: just pass on any weights */
weight1_out = weight_out;
weight2_out = weight_out;
}
if (cl1in->link)
transform_multi_closure(cl1in->link->parent, weight1_out, volume);
if (cl2in->link)
transform_multi_closure(cl2in->link->parent, weight2_out, volume);
}
else {
ShaderInput *weight_in = node->input((volume) ? "VolumeMixWeight" : "SurfaceMixWeight");
/* not a closure node? */
if (!weight_in)
return;
/* already has a weight connected to it? add weights */
float weight_value = node->get_float(weight_in->socket_type);
if (weight_in->link || weight_value != 0.0f) {
MathNode *math_node = new MathNode();
add(math_node);
if (weight_in->link)
connect(weight_in->link, math_node->input("Value1"));
else
math_node->value1 = weight_value;
if (weight_out)
connect(weight_out, math_node->input("Value2"));
else
math_node->value2 = 1.0f;
weight_out = math_node->output("Value");
if (weight_in->link)
disconnect(weight_in);
}
/* connected to closure mix weight */
if (weight_out)
connect(weight_out, weight_in);
else
node->set(weight_in->socket_type, weight_value + 1.0f);
}
}
int ShaderGraph::get_num_closures()
{
int num_closures = 0;
foreach (ShaderNode *node, nodes) {
ClosureType closure_type = node->get_closure_type();
if (closure_type == CLOSURE_NONE_ID) {
continue;
}
else if (CLOSURE_IS_BSSRDF(closure_type)) {
num_closures += 3;
}
else if (CLOSURE_IS_GLASS(closure_type)) {
num_closures += 2;
}
else if (CLOSURE_IS_BSDF_MULTISCATTER(closure_type)) {
num_closures += 2;
}
else if (CLOSURE_IS_PRINCIPLED(closure_type)) {
num_closures += 8;
}
else if (CLOSURE_IS_VOLUME(closure_type)) {
num_closures += VOLUME_STACK_SIZE;
}
else if (closure_type == CLOSURE_BSDF_HAIR_PRINCIPLED_ID) {
num_closures += 4;
}
else {
++num_closures;
}
}
return num_closures;
}
void ShaderGraph::dump_graph(const char *filename)
{
FILE *fd = fopen(filename, "w");
if (fd == NULL) {
printf("Error opening file for dumping the graph: %s\n", filename);
return;
}
fprintf(fd, "digraph shader_graph {\n");
fprintf(fd, "ranksep=1.5\n");
fprintf(fd, "rankdir=LR\n");
fprintf(fd, "splines=false\n");
foreach (ShaderNode *node, nodes) {
fprintf(fd, "// NODE: %p\n", node);
fprintf(fd, "\"%p\" [shape=record,label=\"{", node);
if (node->inputs.size()) {
fprintf(fd, "{");
foreach (ShaderInput *socket, node->inputs) {
if (socket != node->inputs[0]) {
fprintf(fd, "|");
}
fprintf(fd, "<IN_%p>%s", socket, socket->name().c_str());
}
fprintf(fd, "}|");
}
fprintf(fd, "%s", node->name.c_str());
if (node->bump == SHADER_BUMP_CENTER) {
fprintf(fd, " (bump:center)");
}
else if (node->bump == SHADER_BUMP_DX) {
fprintf(fd, " (bump:dx)");
}
else if (node->bump == SHADER_BUMP_DY) {
fprintf(fd, " (bump:dy)");
}
if (node->outputs.size()) {
fprintf(fd, "|{");
foreach (ShaderOutput *socket, node->outputs) {
if (socket != node->outputs[0]) {
fprintf(fd, "|");
}
fprintf(fd, "<OUT_%p>%s", socket, socket->name().c_str());
}
fprintf(fd, "}");
}
fprintf(fd, "}\"]");
}
foreach (ShaderNode *node, nodes) {
foreach (ShaderOutput *output, node->outputs) {
foreach (ShaderInput *input, output->links) {
fprintf(fd,
"// CONNECTION: OUT_%p->IN_%p (%s:%s)\n",
output,
input,
output->name().c_str(),
input->name().c_str());
fprintf(fd,
"\"%p\":\"OUT_%p\":e -> \"%p\":\"IN_%p\":w [label=\"\"]\n",
output->parent,
output,
input->parent,
input);
}
}
}
fprintf(fd, "}\n");
fclose(fd);
}
CCL_NAMESPACE_END