forked from bartvdbraak/blender
31d679b667
Fixes some issues with NaN vertices in special cases. Also adds edge interpolation routines which are currently unused but which are requires to implement edge CD interpolation.
440 lines
16 KiB
Diff
440 lines
16 KiB
Diff
diff -r e82d852e4fb0 lib/csg_collector.cpp
|
|
--- a/lib/csg_collector.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/csg_collector.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -21,6 +21,7 @@
|
|
|
|
#include <carve/csg.hpp>
|
|
#include <iostream>
|
|
+#include "csg_collector.hpp"
|
|
#include "intersect_debug.hpp"
|
|
|
|
#if defined(CARVE_DEBUG_WRITE_PLY_DATA)
|
|
diff -r e82d852e4fb0 lib/face.cpp
|
|
--- a/lib/face.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/face.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -21,61 +21,69 @@
|
|
|
|
#include <carve/poly.hpp>
|
|
|
|
-double CALC_X(const carve::geom::plane<3> &p, double y, double z) { return -(p.d + p.N.y * y + p.N.z * z) / p.N.x; }
|
|
-double CALC_Y(const carve::geom::plane<3> &p, double x, double z) { return -(p.d + p.N.x * x + p.N.z * z) / p.N.y; }
|
|
-double CALC_Z(const carve::geom::plane<3> &p, double x, double y) { return -(p.d + p.N.x * x + p.N.y * y) / p.N.z; }
|
|
+namespace {
|
|
+
|
|
+ double CALC_X(const carve::geom::plane<3> &p, double y, double z) { return -(p.d + p.N.y * y + p.N.z * z) / p.N.x; }
|
|
+ double CALC_Y(const carve::geom::plane<3> &p, double x, double z) { return -(p.d + p.N.x * x + p.N.z * z) / p.N.y; }
|
|
+ double CALC_Z(const carve::geom::plane<3> &p, double x, double y) { return -(p.d + p.N.x * x + p.N.y * y) / p.N.z; }
|
|
+
|
|
+} // namespace
|
|
|
|
namespace carve {
|
|
namespace poly {
|
|
|
|
- carve::geom2d::P2 _project_1(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.z, v.y);
|
|
- }
|
|
+ namespace {
|
|
|
|
- carve::geom2d::P2 _project_2(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.x, v.z);
|
|
- }
|
|
+ carve::geom2d::P2 _project_1(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.z, v.y);
|
|
+ }
|
|
|
|
- carve::geom2d::P2 _project_3(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.y, v.x);
|
|
- }
|
|
+ carve::geom2d::P2 _project_2(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.x, v.z);
|
|
+ }
|
|
|
|
- carve::geom2d::P2 _project_4(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.y, v.z);
|
|
- }
|
|
+ carve::geom2d::P2 _project_3(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.y, v.x);
|
|
+ }
|
|
|
|
- carve::geom2d::P2 _project_5(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.z, v.x);
|
|
- }
|
|
+ carve::geom2d::P2 _project_4(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.y, v.z);
|
|
+ }
|
|
|
|
- carve::geom2d::P2 _project_6(const carve::geom3d::Vector &v) {
|
|
- return carve::geom::VECTOR(v.x, v.y);
|
|
- }
|
|
+ carve::geom2d::P2 _project_5(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.z, v.x);
|
|
+ }
|
|
|
|
+ carve::geom2d::P2 _project_6(const carve::geom3d::Vector &v) {
|
|
+ return carve::geom::VECTOR(v.x, v.y);
|
|
+ }
|
|
|
|
- carve::geom3d::Vector _unproject_1(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(CALC_X(plane_eqn, p.y, p.x), p.y, p.x);
|
|
- }
|
|
|
|
- carve::geom3d::Vector _unproject_2(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(p.x, CALC_Y(plane_eqn, p.x, p.y), p.y);
|
|
- }
|
|
+ carve::geom3d::Vector _unproject_1(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(CALC_X(plane_eqn, p.y, p.x), p.y, p.x);
|
|
+ }
|
|
|
|
- carve::geom3d::Vector _unproject_3(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(p.y, p.x, CALC_Z(plane_eqn, p.y, p.x));
|
|
- }
|
|
+ carve::geom3d::Vector _unproject_2(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(p.x, CALC_Y(plane_eqn, p.x, p.y), p.y);
|
|
+ }
|
|
|
|
- carve::geom3d::Vector _unproject_4(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(CALC_X(plane_eqn, p.x, p.y), p.x, p.y);
|
|
- }
|
|
+ carve::geom3d::Vector _unproject_3(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(p.y, p.x, CALC_Z(plane_eqn, p.y, p.x));
|
|
+ }
|
|
|
|
- carve::geom3d::Vector _unproject_5(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(p.y, CALC_Y(plane_eqn, p.y, p.x), p.x);
|
|
- }
|
|
+ carve::geom3d::Vector _unproject_4(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(CALC_X(plane_eqn, p.x, p.y), p.x, p.y);
|
|
+ }
|
|
|
|
- carve::geom3d::Vector _unproject_6(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
- return carve::geom::VECTOR(p.x, p.y, CALC_Z(plane_eqn, p.x, p.y));
|
|
- }
|
|
+ carve::geom3d::Vector _unproject_5(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(p.y, CALC_Y(plane_eqn, p.y, p.x), p.x);
|
|
+ }
|
|
+
|
|
+ carve::geom3d::Vector _unproject_6(const carve::geom2d::P2 &p, const carve::geom3d::Plane &plane_eqn) {
|
|
+ return carve::geom::VECTOR(p.x, p.y, CALC_Z(plane_eqn, p.x, p.y));
|
|
+ }
|
|
+
|
|
+ } // namespace
|
|
|
|
static carve::geom2d::P2 (*project_tab[2][3])(const carve::geom3d::Vector &) = {
|
|
{ &_project_1, &_project_2, &_project_3 },
|
|
diff -r e82d852e4fb0 lib/geom2d.cpp
|
|
--- a/lib/geom2d.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/geom2d.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -157,9 +157,9 @@
|
|
return pointInPoly(points, p2_adapt_ident(), p);
|
|
}
|
|
|
|
- int lineSegmentPolyIntersections(const P2Vector &points,
|
|
- LineSegment2 line,
|
|
- std::vector<PolyIntersectionInfo> &out) {
|
|
+ static int lineSegmentPolyIntersections(const P2Vector &points,
|
|
+ LineSegment2 line,
|
|
+ std::vector<PolyIntersectionInfo> &out) {
|
|
int count = 0;
|
|
|
|
if (line.v2 < line.v1) { line.flip(); }
|
|
@@ -239,9 +239,9 @@
|
|
}
|
|
};
|
|
|
|
- int sortedLineSegmentPolyIntersections(const P2Vector &points,
|
|
- LineSegment2 line,
|
|
- std::vector<PolyIntersectionInfo> &out) {
|
|
+ static int sortedLineSegmentPolyIntersections(const P2Vector &points,
|
|
+ LineSegment2 line,
|
|
+ std::vector<PolyIntersectionInfo> &out) {
|
|
|
|
bool swapped = line.v2 < line.v1;
|
|
|
|
diff -r e82d852e4fb0 lib/intersect.cpp
|
|
--- a/lib/intersect.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/intersect.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -1378,9 +1378,9 @@
|
|
* @param result_list
|
|
* @param shared_edge_ptr
|
|
*/
|
|
-void returnSharedEdges(carve::csg::V2Set &shared_edges,
|
|
- std::list<carve::mesh::MeshSet<3> *> &result_list,
|
|
- carve::csg::V2Set *shared_edge_ptr) {
|
|
+static void returnSharedEdges(carve::csg::V2Set &shared_edges,
|
|
+ std::list<carve::mesh::MeshSet<3> *> &result_list,
|
|
+ carve::csg::V2Set *shared_edge_ptr) {
|
|
// need to convert shared edges to point into result
|
|
typedef std::map<carve::geom3d::Vector, carve::mesh::MeshSet<3>::vertex_t *> remap_type;
|
|
remap_type remap;
|
|
diff -r e82d852e4fb0 lib/intersect_face_division.cpp
|
|
--- a/lib/intersect_face_division.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/intersect_face_division.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -1455,7 +1455,7 @@
|
|
std::vector<carve::mesh::MeshSet<3>::vertex_t *> base_loop;
|
|
std::list<std::vector<carve::mesh::MeshSet<3>::vertex_t *> > hole_loops;
|
|
|
|
- bool face_edge_intersected = assembleBaseLoop(face, data, base_loop, hooks);
|
|
+ /*bool face_edge_intersected = */assembleBaseLoop(face, data, base_loop, hooks);
|
|
|
|
detail::FV2SMap::const_iterator fse_iter = data.face_split_edges.find(face);
|
|
|
|
diff -r e82d852e4fb0 lib/math.cpp
|
|
--- a/lib/math.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/math.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -42,20 +42,21 @@
|
|
Root(double r, int m) : root(r), multiplicity(m) {}
|
|
};
|
|
|
|
- void cplx_sqrt(double re, double im,
|
|
- double &re_1, double &im_1,
|
|
- double &re_2, double &im_2) {
|
|
- if (re == 0.0 && im == 0.0) {
|
|
- re_1 = re_2 = re;
|
|
- im_1 = im_2 = im;
|
|
- } else {
|
|
- double d = sqrt(re * re + im * im);
|
|
- re_1 = sqrt((d + re) / 2.0);
|
|
- re_2 = re_1;
|
|
- im_1 = fabs(sqrt((d - re) / 2.0));
|
|
- im_2 = -im_1;
|
|
+ namespace {
|
|
+ void cplx_sqrt(double re, double im,
|
|
+ double &re_1, double &im_1,
|
|
+ double &re_2, double &im_2) {
|
|
+ if (re == 0.0 && im == 0.0) {
|
|
+ re_1 = re_2 = re;
|
|
+ im_1 = im_2 = im;
|
|
+ } else {
|
|
+ double d = sqrt(re * re + im * im);
|
|
+ re_1 = sqrt((d + re) / 2.0);
|
|
+ re_2 = re_1;
|
|
+ im_1 = fabs(sqrt((d - re) / 2.0));
|
|
+ im_2 = -im_1;
|
|
+ }
|
|
}
|
|
- }
|
|
|
|
void cplx_cbrt(double re, double im,
|
|
double &re_1, double &im_1,
|
|
@@ -76,109 +77,110 @@
|
|
}
|
|
}
|
|
|
|
- void add_root(std::vector<Root> &roots, double root) {
|
|
- for (size_t i = 0; i < roots.size(); ++i) {
|
|
- if (roots[i].root == root) {
|
|
- roots[i].multiplicity++;
|
|
+ void add_root(std::vector<Root> &roots, double root) {
|
|
+ for (size_t i = 0; i < roots.size(); ++i) {
|
|
+ if (roots[i].root == root) {
|
|
+ roots[i].multiplicity++;
|
|
+ return;
|
|
+ }
|
|
+ }
|
|
+ roots.push_back(Root(root));
|
|
+ }
|
|
+
|
|
+ void linear_roots(double c1, double c0, std::vector<Root> &roots) {
|
|
+ roots.push_back(Root(c0 / c1));
|
|
+ }
|
|
+
|
|
+ void quadratic_roots(double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
+ if (fabs(c2) < EPS) {
|
|
+ linear_roots(c1, c0, roots);
|
|
return;
|
|
}
|
|
- }
|
|
- roots.push_back(Root(root));
|
|
- }
|
|
|
|
- void linear_roots(double c1, double c0, std::vector<Root> &roots) {
|
|
- roots.push_back(Root(c0 / c1));
|
|
- }
|
|
+ double p = 0.5 * c1 / c2;
|
|
+ double dis = p * p - c0 / c2;
|
|
|
|
- void quadratic_roots(double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
- if (fabs(c2) < EPS) {
|
|
- linear_roots(c1, c0, roots);
|
|
- return;
|
|
+ if (dis > 0.0) {
|
|
+ dis = sqrt(dis);
|
|
+ if (-p - dis != -p + dis) {
|
|
+ roots.push_back(Root(-p - dis));
|
|
+ roots.push_back(Root(-p + dis));
|
|
+ } else {
|
|
+ roots.push_back(Root(-p, 2));
|
|
+ }
|
|
+ }
|
|
}
|
|
|
|
- double p = 0.5 * c1 / c2;
|
|
- double dis = p * p - c0 / c2;
|
|
+ void cubic_roots(double c3, double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
+ int n_sol = 0;
|
|
+ double _r[3];
|
|
|
|
- if (dis > 0.0) {
|
|
- dis = sqrt(dis);
|
|
- if (-p - dis != -p + dis) {
|
|
- roots.push_back(Root(-p - dis));
|
|
- roots.push_back(Root(-p + dis));
|
|
+ if (fabs(c3) < EPS) {
|
|
+ quadratic_roots(c2, c1, c0, roots);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ if (fabs(c0) < EPS) {
|
|
+ quadratic_roots(c3, c2, c1, roots);
|
|
+ add_root(roots, 0.0);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ double xN = -c2 / (3.0 * c3);
|
|
+ double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN));
|
|
+
|
|
+ double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3);
|
|
+ double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq);
|
|
+ double dis = yN * yN - h_sq;
|
|
+
|
|
+ if (dis > EPS) {
|
|
+ // One real root, two complex roots.
|
|
+
|
|
+ double dis_sqrt = sqrt(dis);
|
|
+ double r_p = yN - dis_sqrt;
|
|
+ double r_q = yN + dis_sqrt;
|
|
+ double p = cbrt(fabs(r_p)/(2.0 * c3));
|
|
+ double q = cbrt(fabs(r_q)/(2.0 * c3));
|
|
+
|
|
+ if (r_p > 0.0) p = -p;
|
|
+ if (r_q > 0.0) q = -q;
|
|
+
|
|
+ _r[0] = xN + p + q;
|
|
+ n_sol = 1;
|
|
+
|
|
+ double re = xN - p * .5 - q * .5;
|
|
+ double im = p * M_SQRT_3_4 - q * M_SQRT_3_4;
|
|
+
|
|
+ // root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i);
|
|
+ // root 3: complex conjugate of root 2
|
|
+
|
|
+ if (im < EPS) {
|
|
+ _r[1] = _r[2] = re;
|
|
+ n_sol += 2;
|
|
+ }
|
|
+ } else if (dis < -EPS) {
|
|
+ // Three distinct real roots.
|
|
+ double theta = acos(-yN / sqrt(h_sq)) / 3.0;
|
|
+ double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3);
|
|
+
|
|
+ _r[0] = xN + (2.0 * delta) * cos(theta);
|
|
+ _r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta);
|
|
+ _r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta);
|
|
+ n_sol = 3;
|
|
} else {
|
|
- roots.push_back(Root(-p, 2));
|
|
+ // Three real roots (two or three equal).
|
|
+ double r = yN / (2.0 * c3);
|
|
+ double delta = cbrt(r);
|
|
+
|
|
+ _r[0] = xN + delta;
|
|
+ _r[1] = xN + delta;
|
|
+ _r[2] = xN - 2.0 * delta;
|
|
+ n_sol = 3;
|
|
}
|
|
- }
|
|
- }
|
|
|
|
- void cubic_roots(double c3, double c2, double c1, double c0, std::vector<Root> &roots) {
|
|
- int n_sol = 0;
|
|
- double _r[3];
|
|
-
|
|
- if (fabs(c3) < EPS) {
|
|
- quadratic_roots(c2, c1, c0, roots);
|
|
- return;
|
|
- }
|
|
-
|
|
- if (fabs(c0) < EPS) {
|
|
- quadratic_roots(c3, c2, c1, roots);
|
|
- add_root(roots, 0.0);
|
|
- return;
|
|
- }
|
|
-
|
|
- double xN = -c2 / (3.0 * c3);
|
|
- double yN = c0 + xN * (c1 + xN * (c2 + c3 * xN));
|
|
-
|
|
- double delta_sq = (c2 * c2 - 3.0 * c3 * c1) / (9.0 * c3 * c3);
|
|
- double h_sq = 4.0 / 9.0 * (c2 * c2 - 3.0 * c3 * c1) * (delta_sq * delta_sq);
|
|
- double dis = yN * yN - h_sq;
|
|
-
|
|
- if (dis > EPS) {
|
|
- // One real root, two complex roots.
|
|
-
|
|
- double dis_sqrt = sqrt(dis);
|
|
- double r_p = yN - dis_sqrt;
|
|
- double r_q = yN + dis_sqrt;
|
|
- double p = cbrt(fabs(r_p)/(2.0 * c3));
|
|
- double q = cbrt(fabs(r_q)/(2.0 * c3));
|
|
-
|
|
- if (r_p > 0.0) p = -p;
|
|
- if (r_q > 0.0) q = -q;
|
|
-
|
|
- _r[0] = xN + p + q;
|
|
- n_sol = 1;
|
|
-
|
|
- double re = xN - p * .5 - q * .5;
|
|
- double im = p * M_SQRT_3_4 - q * M_SQRT_3_4;
|
|
-
|
|
- // root 2: xN + p * exp(M_2PI_3.i) + q * exp(-M_2PI_3.i);
|
|
- // root 3: complex conjugate of root 2
|
|
-
|
|
- if (im < EPS) {
|
|
- _r[1] = _r[2] = re;
|
|
- n_sol += 2;
|
|
+ for (int i=0; i < n_sol; i++) {
|
|
+ add_root(roots, _r[i]);
|
|
}
|
|
- } else if (dis < -EPS) {
|
|
- // Three distinct real roots.
|
|
- double theta = acos(-yN / sqrt(h_sq)) / 3.0;
|
|
- double delta = sqrt(c2 * c2 - 3.0 * c3 * c1) / (3.0 * c3);
|
|
-
|
|
- _r[0] = xN + (2.0 * delta) * cos(theta);
|
|
- _r[1] = xN + (2.0 * delta) * cos(M_2PI_3 - theta);
|
|
- _r[2] = xN + (2.0 * delta) * cos(M_2PI_3 + theta);
|
|
- n_sol = 3;
|
|
- } else {
|
|
- // Three real roots (two or three equal).
|
|
- double r = yN / (2.0 * c3);
|
|
- double delta = cbrt(r);
|
|
-
|
|
- _r[0] = xN + delta;
|
|
- _r[1] = xN + delta;
|
|
- _r[2] = xN - 2.0 * delta;
|
|
- n_sol = 3;
|
|
- }
|
|
-
|
|
- for (int i=0; i < n_sol; i++) {
|
|
- add_root(roots, _r[i]);
|
|
}
|
|
}
|
|
|
|
diff -r e82d852e4fb0 lib/triangulator.cpp
|
|
--- a/lib/triangulator.cpp Wed Jan 15 13:16:14 2014 +1100
|
|
+++ b/lib/triangulator.cpp Mon Jan 27 17:01:46 2014 +0600
|
|
@@ -718,10 +718,10 @@
|
|
|
|
|
|
|
|
-bool testCandidateAttachment(const std::vector<std::vector<carve::geom2d::P2> > &poly,
|
|
- std::vector<std::pair<size_t, size_t> > ¤t_f_loop,
|
|
- size_t curr,
|
|
- carve::geom2d::P2 hole_min) {
|
|
+static bool testCandidateAttachment(const std::vector<std::vector<carve::geom2d::P2> > &poly,
|
|
+ std::vector<std::pair<size_t, size_t> > ¤t_f_loop,
|
|
+ size_t curr,
|
|
+ carve::geom2d::P2 hole_min) {
|
|
const size_t SZ = current_f_loop.size();
|
|
|
|
if (!carve::geom2d::internalToAngle(pvert(poly, current_f_loop[(curr+1) % SZ]),
|