blender/source/gameengine/Physics/common/PHY_IPhysicsEnvironment.h
Benoit Bolsee 3ea1c1b4b6 BGE: new sensor object to generalize Near and Radar sensor, static-static collision capbility.
A new type of "Sensor" physics object is available in the GE for advanced
collision management. It's called Sensor for its similarities with the
physics objects that underlie the Near and Radar sensors.
Like the Near and Radar object it is:
- static and ghost
- invisible by default
- always active to ensure correct collision detection
- capable of detecting both static and dynamic objects
- ignoring collision with their parent
- capable of broadphase filtering based on:
  * Actor option: the collisioning object must have the Actor flag set to be detected
  * property/material: as specified in the collision sensors attached to it
  Broadphase filtering is important for performance reason: the collision points
  will be computed only for the objects that pass the broahphase filter.
- automatically removed from the simulation when no collision sensor is active on it

Unlike the Near and Radar object it can:
- take any shape, including triangle mesh
- be made visible for debugging (just use the Visible actuator)
- have multiple collision sensors using it

Other than that, the sensor objects are ordinary objects. You can move them
freely or parent them. When parented to a dynamic object, they can provide
advanced collision control to this object.

The type of collision capability depends on the shape:
- box, sphere, cylinder, cone, convex hull provide volume detection.
- triangle mesh provides surface detection but you can give some volume
  to the suface by increasing the margin in the Advanced Settings panel.
  The margin applies on both sides of the surface.

Performance tip:
- Sensor objects perform better than Near and Radar: they do less synchronizations
  because of the Scenegraph optimizations and they can have multiple collision sensors
  on them (with different property filtering for example).
- Always prefer simple shape (box, sphere) to complex shape whenever possible.
- Always use broadphase filtering (avoid collision sensor with empty propery/material)
- Use collision sensor only when you need them. When no collision sensor is active
  on the sensor object, it is removed from the simulation and consume no CPU.

Known limitations:
- When running Blender in debug mode, you will see one warning line of the console:
  "warning btCollisionDispatcher::needsCollision: static-static collision!"
  In release mode this message is not printed.
- Collision margin has no effect on sphere, cone and cylinder shape.

Other performance improvements:
- Remove unnecessary interpolation for Near and Radar objects and by extension
  sensor objects.
- Use direct matrix copy instead of quaternion to synchronize orientation.

Other bug fix:
- Fix Near/Radar position error on newly activated objects. This was causing
  several detection problems in YoFrankie
- Fix margin not passed correctly to gImpact shape.
- Disable force/velocity actions on static objects
2009-05-17 12:51:51 +00:00

166 lines
6.9 KiB
C++

/**
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#ifndef _IPHYSICSENVIRONMENT
#define _IPHYSICSENVIRONMENT
#include <vector>
#include "PHY_DynamicTypes.h"
class PHY_IVehicle;
class RAS_MeshObject;
class PHY_IPhysicsController;
/**
* pass back information from rayTest
*/
struct PHY_RayCastResult
{
PHY_IPhysicsController* m_controller;
PHY__Vector3 m_hitPoint;
PHY__Vector3 m_hitNormal;
const RAS_MeshObject* m_meshObject; // !=NULL for mesh object (only for Bullet controllers)
int m_polygon; // index of the polygon hit by the ray,
// only if m_meshObject != NULL
};
/**
* This class replaces the ignoreController parameter of rayTest function.
* It allows more sophisticated filtering on the physics controller before computing the ray intersection to save CPU.
* It is only used to its full extend by the Ccd physics environement (Bullet).
*/
class PHY_IRayCastFilterCallback
{
public:
PHY_IPhysicsController* m_ignoreController;
bool m_faceNormal;
virtual ~PHY_IRayCastFilterCallback()
{
}
virtual bool needBroadphaseRayCast(PHY_IPhysicsController* controller)
{
return true;
}
virtual void reportHit(PHY_RayCastResult* result) = 0;
PHY_IRayCastFilterCallback(PHY_IPhysicsController* ignoreController, bool faceNormal=false)
:m_ignoreController(ignoreController),
m_faceNormal(faceNormal)
{
}
};
/**
* Physics Environment takes care of stepping the simulation and is a container for physics entities (rigidbodies,constraints, materials etc.)
* A derived class may be able to 'construct' entities by loading and/or converting
*/
class PHY_IPhysicsEnvironment
{
public:
virtual ~PHY_IPhysicsEnvironment();
virtual void beginFrame() = 0;
virtual void endFrame() = 0;
/// Perform an integration step of duration 'timeStep'.
virtual bool proceedDeltaTime(double curTime,float timeStep,float interval)=0;
///draw debug lines (make sure to call this during the render phase, otherwise lines are not drawn properly)
virtual void debugDrawWorld(){}
virtual void setFixedTimeStep(bool useFixedTimeStep,float fixedTimeStep)=0;
//returns 0.f if no fixed timestep is used
virtual float getFixedTimeStep()=0;
///setDebugMode is used to support several ways of debug lines, contact point visualization
virtual void setDebugMode(int debugMode) {}
///setNumIterations set the number of iterations for iterative solvers
virtual void setNumIterations(int numIter) {}
///setNumTimeSubSteps set the number of divisions of the timestep. Tradeoff quality versus performance.
virtual void setNumTimeSubSteps(int numTimeSubSteps){}
///setDeactivationTime sets the minimum time that an objects has to stay within the velocity tresholds until it gets fully deactivated
virtual void setDeactivationTime(float dTime) {}
///setDeactivationLinearTreshold sets the linear velocity treshold, see setDeactivationTime
virtual void setDeactivationLinearTreshold(float linTresh) {}
///setDeactivationAngularTreshold sets the angular velocity treshold, see setDeactivationTime
virtual void setDeactivationAngularTreshold(float angTresh) {}
///setContactBreakingTreshold sets tresholds to do with contact point management
virtual void setContactBreakingTreshold(float contactBreakingTreshold) {}
///continuous collision detection mode, very experimental for Bullet
virtual void setCcdMode(int ccdMode) {}
///successive overrelaxation constant, in case PSOR is used, values in between 1 and 2 guarantee converging behaviour
virtual void setSolverSorConstant(float sor) {}
///setSolverType, internal setting, chooses solvertype, PSOR, Dantzig, impulse based, penalty based
virtual void setSolverType(int solverType) {}
///setTau sets the spring constant of a penalty based solver
virtual void setSolverTau(float tau) {}
///setDamping sets the damper constant of a penalty based solver
virtual void setSolverDamping(float damping) {}
///linear air damping for rigidbodies
virtual void setLinearAirDamping(float damping) {}
/// penetrationdepth setting
virtual void setUseEpa(bool epa) {}
virtual void setGravity(float x,float y,float z)=0;
virtual int createConstraint(class PHY_IPhysicsController* ctrl,class PHY_IPhysicsController* ctrl2,PHY_ConstraintType type,
float pivotX,float pivotY,float pivotZ,
float axis0X,float axis0Y,float axis0Z,
float axis1X=0,float axis1Y=0,float axis1Z=0,
float axis2X=0,float axis2Y=0,float axis2Z=0,int flag=0
)=0;
virtual void removeConstraint(int constraintid)=0;
virtual float getAppliedImpulse(int constraintid){ return 0.f;}
//complex constraint for vehicles
virtual PHY_IVehicle* getVehicleConstraint(int constraintId) =0;
virtual PHY_IPhysicsController* rayTest(PHY_IRayCastFilterCallback &filterCallback, float fromX,float fromY,float fromZ, float toX,float toY,float toZ)=0;
//culling based on physical broad phase
// the plane number must be set as follow: near, far, left, right, top, botton
// the near plane must be the first one and must always be present, it is used to get the direction of the view
virtual bool cullingTest(PHY_CullingCallback callback, void *userData, PHY__Vector4* planeNormals, int planeNumber, int occlusionRes) = 0;
//Methods for gamelogic collision/physics callbacks
//todo:
virtual void addSensor(PHY_IPhysicsController* ctrl)=0;
virtual void removeSensor(PHY_IPhysicsController* ctrl)=0;
virtual void addTouchCallback(int response_class, PHY_ResponseCallback callback, void *user)=0;
virtual bool requestCollisionCallback(PHY_IPhysicsController* ctrl)=0;
virtual bool removeCollisionCallback(PHY_IPhysicsController* ctrl)=0;
//These two methods are *solely* used to create controllers for sensor! Don't use for anything else
virtual PHY_IPhysicsController* CreateSphereController(float radius,const PHY__Vector3& position) =0;
virtual PHY_IPhysicsController* CreateConeController(float coneradius,float coneheight)=0;
virtual void setConstraintParam(int constraintId,int param,float value,float value1) = 0;
};
#endif //_IPHYSICSENVIRONMENT