vtk-m/vtkm/filter/ParticleDensityNearestGridPoint.hxx
2021-03-18 16:44:23 -06:00

123 lines
4.2 KiB
C++

//============================================================================
// Copyright (c) Kitware, Inc.
// All rights reserved.
// See LICENSE.txt for details.
//
// This software is distributed WITHOUT ANY WARRANTY; without even
// the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
// PURPOSE. See the above copyright notice for more information.
//============================================================================
#ifndef vtk_m_filter_particle_density_ngp_hxx
#define vtk_m_filter_particle_density_ngp_hxx
#include <vtkm/cont/ArrayCopy.h>
#include <vtkm/cont/ArrayHandleConstant.h>
#include <vtkm/cont/CellLocatorUniformGrid.h>
#include <vtkm/cont/DataSetBuilderUniform.h>
#include <vtkm/filter/PolicyBase.h>
#include <vtkm/worklet/WorkletMapField.h>
namespace vtkm
{
namespace worklet
{
class NGPWorklet : public vtkm::worklet::WorkletMapField
{
public:
using ControlSignature = void(FieldIn coords,
FieldIn field,
ExecObject locator,
AtomicArrayInOut density);
using ExecutionSignature = void(_1, _2, _3, _4);
template <typename Point, typename T, typename CellLocatorExecObj, typename AtomicArray>
VTKM_EXEC void operator()(const Point& point,
const T value,
const CellLocatorExecObj& locator,
AtomicArray& density) const
{
vtkm::Id cellId{};
vtkm::Vec3f parametric;
// Find the cell containing the point
if (locator.FindCell(point, cellId, parametric) == vtkm::ErrorCode::Success)
{
// deposit field value to density
density.Add(cellId, value);
}
// We simply ignore that particular particle when it is not in the mesh.
}
}; //NGPWorklet
} //worklet
} //vtkm
namespace vtkm
{
namespace filter
{
inline VTKM_CONT ParticleDensityNearestGridPoint::ParticleDensityNearestGridPoint(
const vtkm::Id3& dimension,
const vtkm::Vec3f& origin,
const vtkm::Vec3f& spacing)
: Superclass(dimension, origin, spacing)
{
}
inline VTKM_CONT ParticleDensityNearestGridPoint::ParticleDensityNearestGridPoint(
const Id3& dimension,
const vtkm::Bounds& bounds)
: Superclass(dimension, bounds)
{
}
template <typename T, typename StorageType, typename Policy>
inline VTKM_CONT vtkm::cont::DataSet ParticleDensityNearestGridPoint::DoExecute(
const vtkm::cont::DataSet& dataSet,
const vtkm::cont::ArrayHandle<T, StorageType>&
field, // particles' scala field to be deposited to the mesh, e.g. mass or charge
const vtkm::filter::FieldMetadata&,
vtkm::filter::PolicyBase<Policy>)
{
// TODO: it really doesn't need to be a UniformGrid, any CellSet with CellLocator will work.
// Make it another input rather an output generated.
// We stores density as CellField which conforms to physicists' idea of particle density
// better. However, VTK/VTKm's idea of "Image" Dataset and the ImageConnectivity filter
// expect a PointField. For better separation of concerns, we create a uniform dataset
// that has the cell dimension as expected and later convert the dataset to its dual.
auto uniform = vtkm::cont::DataSetBuilderUniform::Create(
this->Dimension + vtkm::Id3{ 1, 1, 1 }, this->Origin, this->Spacing);
// Create a CellLocator
vtkm::cont::CellLocatorUniformGrid locator;
locator.SetCellSet(uniform.GetCellSet());
locator.SetCoordinates(uniform.GetCoordinateSystem());
locator.Update();
auto coords = dataSet.GetCoordinateSystem().GetDataAsMultiplexer();
// We create an ArrayHandle and pass it to the Worklet as AtomicArrayInOut.
// However the ArrayHandle needs to be allocated and initialized first. The
// easiest way to do it is to copy from an ArrayHandleConstant
vtkm::cont::ArrayHandle<T> density;
vtkm::cont::ArrayCopy(vtkm::cont::ArrayHandleConstant<T>(0, uniform.GetNumberOfCells()), density);
this->Invoke(vtkm::worklet::NGPWorklet{}, coords, field, locator, density);
if (DivideByVolume)
{
auto volume = this->Spacing[0] * this->Spacing[1] * this->Spacing[2];
this->Invoke(DivideByVolumeWorklet{ volume }, density);
}
uniform.AddField(vtkm::cont::make_FieldCell("density", density));
return uniform;
}
}
}
#endif //vtk_m_filter_particle_density_ngp_hxx