Go to file
Kenneth Moreland ed43dad6ca Simplify and unify cast interface.
Previously, DynamicArrayHandle and DynamicCellSet had slightly different
interfaces to their CastTo feature. It was a bit confusing and not all
that easy to use.

This change simplifies and unifies them by making each class have a single
CopyTo method that takes a reference to a cast object (an ArrayHandle or
CellSet, respectively) and fills that object with the data contained if
the cast is successfull. This interface gets around having to declare
strange types.

Each object also has a Cast method that has to have a template parameter
specified and returns a reference of that type (if possible).

In addition, the old behavior is preserved for DynamicArrayHandle (but
not DynamicCellSet). To avoid confusion, the name of that cast method is
CastToTypeStorage. However, the method was chaned to not take parameters
to make it consistent with the other Cast method.

Also, the IsType methods have been modified to reflect changes in
cast/copy. IsType now no longer takes arguments. However, an alternate
IsSameType does the same thing but does take an argument.
2016-01-18 15:58:04 -07:00
CMake Extend the timeout for vtkm worklet tests to reduce timeout failures. 2015-12-10 15:28:36 -05:00
docs The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
examples Simplify and unify cast interface. 2016-01-18 15:58:04 -07:00
vtkm Simplify and unify cast interface. 2016-01-18 15:58:04 -07:00
CMakeLists.txt Teach VTK-m how to specify the CUDA GPU architecture to build for. 2015-12-09 13:17:00 -05:00
CONTRIBUTING.md Add a contributing guide to vtk-m. 2015-07-29 17:33:30 -04:00
CTestConfig.cmake The Copyright statement now has all the periods in the correct location. 2015-05-21 10:30:11 -04:00
LICENSE.txt Fix compile time errors 2015-08-21 11:17:10 -07:00
README.md Update ReadMe to reference gitlab. 2015-05-13 08:45:52 -04:00

VTK-m

One of the biggest recent changes in high-performance computing is the increasing use of accelerators. Accelerators contain processing cores that independently are inferior to a core in a typical CPU, but these cores are replicated and grouped such that their aggregate execution provides a very high computation rate at a much lower power. Current and future CPU processors also require much more explicit parallelism. Each successive version of the hardware packs more cores into each processor, and technologies like hyperthreading and vector operations require even more parallel processing to leverage each cores full potential.

VTK-m is a toolkit of scientific visualization algorithms for emerging processor architectures. VTK-m supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing by providing abstract models for data and execution that can be applied to a variety of algorithms across many different processor architectures.

Getting VTK-m

The VTK-m repository is located at https://gitlab.kitware.com/vtk/vtk-m

VTK-m dependencies are:

git clone https://gitlab.kitware.com/vtk/vtk-m.git vtkm
mkdir vtkm-build
cd vtkm-build
cmake-gui ../vtkm

A detailed walk-through of installing and building VTK-m can be found on our Contributing page