c1463baedf29a2ac856fc470b37879a5712a8b4f
displayarray
Display arrays, and any updates to those arrays
from displayarray import display
import numpy as np
arr = np.random.normal(0.5, 0.1, (100, 100, 3))
with display(arr) as d:
while d:
arr[:] += np.random.normal(0.001, 0.0005, (100, 100, 3))
arr %= 1.0
Get webcams and videos at 60fps, and run functions on the data:
from displayarray import display
import math as m
def forest_color(arr):
forest_color.i += 1
arr[..., 0] = (m.sin(forest_color.i*(2*m.pi)*4/360)*255 + arr[..., 0]) % 255
arr[..., 1] = (m.sin((forest_color.i * (2 * m.pi) * 5 + 45) / 360) * 255 + arr[..., 1]) % 255
arr[..., 2] = (m.cos(forest_color.i*(2*m.pi)*3/360)*255 + arr[..., 2]) % 255
forest_color.i = 0
display("fractal test.mp4", callbacks=forest_color, blocking=True, fps_limit=120)
Display tensors as they're running in tensorflow, like this denoising autoencoder:
# see test_display_tensorflow in test_simple_apy for full code.
...
autoencoder.compile(loss="mse", optimizer="adam")
while displayer:
grab = tf.convert_to_tensor(
displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype(np.float32)
/ 255.0
)
grab_noise = tf.convert_to_tensor(
(((displayer.FRAME_DICT["fractal test.mp4frame"][np.newaxis, ...].astype(
np.float32) + np.random.uniform(0, 255, grab.shape)) / 2) % 255)
/ 255.0
)
displayer.update((grab_noise.numpy()[0] * 255.0).astype(np.uint8), "uid for grab noise")
autoencoder.fit(grab_noise, grab, steps_per_epoch=1, epochs=1)
output_image = autoencoder.predict(grab, steps=1)
displayer.update((output_image[0] * 255.0).astype(np.uint8), "uid for autoencoder output")
Handle input
Mouse events captured whenever the mouse moves over the window:
event:0
x,y:133,387
flags:0
param:None
Code:
from displayarray.input import mouse_loop
from displayarray import display
@mouse_loop
def print_mouse_thread(mouse_event):
print(mouse_event)
display("fractal test.mp4", blocking=True)
Installation
displayarray is distributed on [PyPI] (https://pypi.org) as a universal wheel in Python 3.6+ and PyPy.
$ pip install displayarray
Usage
See tests for more example code. API will be generated soon.
License
displayarray is distributed under the terms of both
MIT License <https://choosealicense.com/licenses/mit>
_Apache License, Version 2.0 <https://choosealicense.com/licenses/apache-2.0>
_
at your option.
Description
Languages
Python
97.4%
GLSL
2.6%