blender/intern/cycles/render/object.cpp

753 lines
21 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "camera.h"
#include "device.h"
#include "light.h"
#include "mesh.h"
#include "curves.h"
#include "object.h"
#include "particles.h"
#include "scene.h"
#include "util_foreach.h"
#include "util_logging.h"
#include "util_map.h"
#include "util_progress.h"
#include "util_vector.h"
#include "subd_patch_table.h"
CCL_NAMESPACE_BEGIN
/* Object */
NODE_DEFINE(Object)
{
NodeType* type = NodeType::add("object", create);
SOCKET_NODE(mesh, "Mesh", &Mesh::node_type);
SOCKET_TRANSFORM(tfm, "Transform", transform_identity());
SOCKET_UINT(visibility, "Visibility", ~0);
SOCKET_UINT(random_id, "Random ID", 0);
SOCKET_INT(pass_id, "Pass ID", 0);
SOCKET_BOOLEAN(use_holdout, "Use Holdout", false);
SOCKET_BOOLEAN(hide_on_missing_motion, "Hide on Missing Motion", false);
SOCKET_POINT(dupli_generated, "Dupli Generated", make_float3(0.0f, 0.0f, 0.0f));
SOCKET_POINT2(dupli_uv, "Dupli UV", make_float2(0.0f, 0.0f));
SOCKET_BOOLEAN(is_shadow_catcher, "Shadow Catcher", false);
return type;
}
Object::Object()
: Node(node_type)
{
particle_system = NULL;
particle_index = 0;
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
bounds = BoundBox::empty;
motion.pre = transform_empty();
motion.mid = transform_empty();
motion.post = transform_empty();
use_motion = false;
}
Object::~Object()
{
}
void Object::compute_bounds(bool motion_blur)
{
BoundBox mbounds = mesh->bounds;
if(motion_blur && use_motion) {
MotionTransform mtfm = motion;
if(hide_on_missing_motion) {
/* Hide objects that have no valid previous or next transform, for
* example particle that stop existing. TODO: add support for this
* case in the kernel so we don't get render artifacts. */
if(mtfm.pre == transform_empty() ||
mtfm.post == transform_empty()) {
bounds = BoundBox::empty;
return;
}
}
/* In case of missing motion information for previous/next frame,
* assume there is no motion. */
if(mtfm.pre == transform_empty()) {
mtfm.pre = tfm;
}
if(mtfm.post == transform_empty()) {
mtfm.post = tfm;
}
DecompMotionTransform decomp;
transform_motion_decompose(&decomp, &mtfm, &tfm);
bounds = BoundBox::empty;
/* todo: this is really terrible. according to pbrt there is a better
* way to find this iteratively, but did not find implementation yet
* or try to implement myself */
for(float t = 0.0f; t < 1.0f; t += (1.0f/128.0f)) {
Transform ttfm;
transform_motion_interpolate(&ttfm, &decomp, t);
bounds.grow(mbounds.transformed(&ttfm));
}
}
else {
if(mesh->transform_applied) {
bounds = mbounds;
}
else {
bounds = mbounds.transformed(&tfm);
}
}
}
void Object::apply_transform(bool apply_to_motion)
{
if(!mesh || tfm == transform_identity())
return;
/* triangles */
if(mesh->verts.size()) {
/* store matrix to transform later. when accessing these as attributes we
* do not want the transform to be applied for consistency between static
* and dynamic BVH, so we do it on packing. */
mesh->transform_normal = transform_transpose(transform_inverse(tfm));
/* apply to mesh vertices */
for(size_t i = 0; i < mesh->verts.size(); i++)
mesh->verts[i] = transform_point(&tfm, mesh->verts[i]);
if(apply_to_motion) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps_size; i++)
vert_steps[i] = transform_point(&tfm, vert_steps[i]);
}
Attribute *attr_N = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if(attr_N) {
Transform ntfm = mesh->transform_normal;
size_t steps_size = mesh->verts.size() * (mesh->motion_steps - 1);
float3 *normal_steps = attr_N->data_float3();
for(size_t i = 0; i < steps_size; i++)
normal_steps[i] = normalize(transform_direction(&ntfm, normal_steps[i]));
}
}
}
/* curves */
if(mesh->curve_keys.size()) {
/* compute uniform scale */
float3 c0 = transform_get_column(&tfm, 0);
float3 c1 = transform_get_column(&tfm, 1);
float3 c2 = transform_get_column(&tfm, 2);
float scalar = powf(fabsf(dot(cross(c0, c1), c2)), 1.0f/3.0f);
/* apply transform to curve keys */
for(size_t i = 0; i < mesh->curve_keys.size(); i++) {
float3 co = transform_point(&tfm, mesh->curve_keys[i]);
float radius = mesh->curve_radius[i] * scalar;
/* scale for curve radius is only correct for uniform scale */
mesh->curve_keys[i] = co;
mesh->curve_radius[i] = radius;
}
if(apply_to_motion) {
Attribute *curve_attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(curve_attr) {
/* apply transform to motion curve keys */
size_t steps_size = mesh->curve_keys.size() * (mesh->motion_steps - 1);
float4 *key_steps = curve_attr->data_float4();
for(size_t i = 0; i < steps_size; i++) {
float3 co = transform_point(&tfm, float4_to_float3(key_steps[i]));
float radius = key_steps[i].w * scalar;
/* scale for curve radius is only correct for uniform scale */
key_steps[i] = float3_to_float4(co);
key_steps[i].w = radius;
}
}
}
}
/* we keep normals pointing in same direction on negative scale, notify
2012-06-09 17:22:52 +00:00
* mesh about this in it (re)calculates normals */
if(transform_negative_scale(tfm))
mesh->transform_negative_scaled = true;
if(bounds.valid()) {
mesh->compute_bounds();
compute_bounds(false);
}
/* tfm is not reset to identity, all code that uses it needs to check the
2016-07-14 16:36:21 +00:00
* transform_applied boolean */
}
void Object::tag_update(Scene *scene)
{
if(mesh) {
if(mesh->transform_applied)
mesh->need_update = true;
foreach(Shader *shader, mesh->used_shaders) {
if(shader->use_mis && shader->has_surface_emission)
scene->light_manager->need_update = true;
}
}
scene->camera->need_flags_update = true;
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
vector<float> Object::motion_times()
{
/* compute times at which we sample motion for this object */
vector<float> times;
if(!mesh || mesh->motion_steps == 1)
return times;
int motion_steps = mesh->motion_steps;
for(int step = 0; step < motion_steps; step++) {
if(step != motion_steps / 2) {
float time = 2.0f * step / (motion_steps - 1) - 1.0f;
times.push_back(time);
}
}
return times;
}
bool Object::is_traceable()
{
/* Mesh itself can be empty,can skip all such objects. */
2016-10-24 10:26:12 +00:00
if(!bounds.valid() || bounds.size() == make_float3(0.0f, 0.0f, 0.0f)) {
return false;
}
/* TODO(sergey): Check for mesh vertices/curves. visibility flags. */
return true;
}
/* Object Manager */
ObjectManager::ObjectManager()
{
need_update = true;
need_flags_update = true;
}
ObjectManager::~ObjectManager()
{
}
void ObjectManager::device_update_object_transform(UpdateObejctTransformState *state,
Object *ob,
int object_index)
{
float4 *objects = state->objects;
float4 *objects_vector = state->objects_vector;
Mesh *mesh = ob->mesh;
uint flag = 0;
/* Compute transformations. */
Transform tfm = ob->tfm;
Transform itfm = transform_inverse(tfm);
/* Compute surface area. for uniform scale we can do avoid the many
* transform calls and share computation for instances.
*
* TODO(brecht): Correct for displacement, and move to a better place.
*/
float uniform_scale;
float surface_area = 0.0f;
float pass_id = ob->pass_id;
float random_number = (float)ob->random_id * (1.0f/(float)0xFFFFFFFF);
int particle_index = (ob->particle_system)
? ob->particle_index + state->particle_offset[ob->particle_system]
: 0;
if(transform_uniform_scale(tfm, uniform_scale)) {
map<Mesh*, float>::iterator it;
/* NOTE: This isn't fully optimal and could in theory lead to multiple
* threads calculating area of the same mesh in parallel. However, this
* also prevents suspending all the threads when some mesh's area is
* not yet known.
*/
state->surface_area_lock.lock();
it = state->surface_area_map.find(mesh);
state->surface_area_lock.unlock();
if(it == state->surface_area_map.end()) {
size_t num_triangles = mesh->num_triangles();
for(size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = mesh->verts[t.v[0]];
float3 p2 = mesh->verts[t.v[1]];
float3 p3 = mesh->verts[t.v[2]];
surface_area += triangle_area(p1, p2, p3);
}
state->surface_area_lock.lock();
state->surface_area_map[mesh] = surface_area;
state->surface_area_lock.unlock();
}
else {
surface_area = it->second;
}
surface_area *= uniform_scale;
}
else {
size_t num_triangles = mesh->num_triangles();
for(size_t j = 0; j < num_triangles; j++) {
Mesh::Triangle t = mesh->get_triangle(j);
float3 p1 = transform_point(&tfm, mesh->verts[t.v[0]]);
float3 p2 = transform_point(&tfm, mesh->verts[t.v[1]]);
float3 p3 = transform_point(&tfm, mesh->verts[t.v[2]]);
surface_area += triangle_area(p1, p2, p3);
}
}
/* Pack in texture. */
int offset = object_index*OBJECT_SIZE;
/* OBJECT_TRANSFORM */
memcpy(&objects[offset], &tfm, sizeof(float4)*3);
/* OBJECT_INVERSE_TRANSFORM */
memcpy(&objects[offset+4], &itfm, sizeof(float4)*3);
/* OBJECT_PROPERTIES */
objects[offset+8] = make_float4(surface_area, pass_id, random_number, __int_as_float(particle_index));
if(state->need_motion == Scene::MOTION_PASS) {
/* Motion transformations, is world/object space depending if mesh
* comes with deformed position in object space, or if we transform
* the shading point in world space.
*/
MotionTransform mtfm = ob->motion;
/* In case of missing motion information for previous/next frame,
* assume there is no motion. */
if(!ob->use_motion || mtfm.pre == transform_empty()) {
mtfm.pre = ob->tfm;
}
if(!ob->use_motion || mtfm.post == transform_empty()) {
mtfm.post = ob->tfm;
}
if(!mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)) {
mtfm.pre = mtfm.pre * itfm;
mtfm.post = mtfm.post * itfm;
}
else {
flag |= SD_OBJECT_HAS_VERTEX_MOTION;
}
memcpy(&objects_vector[object_index*OBJECT_VECTOR_SIZE+0], &mtfm.pre, sizeof(float4)*3);
memcpy(&objects_vector[object_index*OBJECT_VECTOR_SIZE+3], &mtfm.post, sizeof(float4)*3);
}
#ifdef __OBJECT_MOTION__
else if(state->need_motion == Scene::MOTION_BLUR) {
if(ob->use_motion) {
/* decompose transformations for interpolation. */
DecompMotionTransform decomp;
transform_motion_decompose(&decomp, &ob->motion, &ob->tfm);
memcpy(&objects[offset], &decomp, sizeof(float4)*8);
flag |= SD_OBJECT_MOTION;
state->have_motion = true;
}
}
#endif
if(mesh->use_motion_blur) {
state->have_motion = true;
}
/* Dupli object coords and motion info. */
int totalsteps = mesh->motion_steps;
int numsteps = (totalsteps - 1)/2;
int numverts = mesh->verts.size();
int numkeys = mesh->curve_keys.size();
objects[offset+9] = make_float4(ob->dupli_generated[0], ob->dupli_generated[1], ob->dupli_generated[2], __int_as_float(numkeys));
objects[offset+10] = make_float4(ob->dupli_uv[0], ob->dupli_uv[1], __int_as_float(numsteps), __int_as_float(numverts));
/* Object flag. */
if(ob->use_holdout) {
flag |= SD_OBJECT_HOLDOUT_MASK;
}
state->object_flag[object_index] = flag;
/* Have curves. */
if(mesh->num_curves()) {
state->have_curves = true;
}
}
bool ObjectManager::device_update_object_transform_pop_work(
UpdateObejctTransformState *state,
int *start_index,
int *num_objects)
{
/* Tweakable parameter, number of objects per chunk.
* Too small value will cause some extra overhead due to spin lock,
* too big value might not use all threads nicely.
*/
static const int OBJECTS_PER_TASK = 32;
bool have_work = false;
state->queue_lock.lock();
int num_scene_objects = state->scene->objects.size();
if(state->queue_start_object < num_scene_objects) {
int count = min(OBJECTS_PER_TASK,
num_scene_objects - state->queue_start_object);
*start_index = state->queue_start_object;
*num_objects = count;
state->queue_start_object += count;
have_work = true;
}
state->queue_lock.unlock();
return have_work;
}
void ObjectManager::device_update_object_transform_task(
UpdateObejctTransformState *state)
{
int start_index, num_objects;
while(device_update_object_transform_pop_work(state,
&start_index,
&num_objects))
{
for(int i = 0; i < num_objects; ++i) {
const int object_index = start_index + i;
Object *ob = state->scene->objects[object_index];
device_update_object_transform(state, ob, object_index);
}
}
}
void ObjectManager::device_update_transforms(Device *device,
DeviceScene *dscene,
Scene *scene,
uint *object_flag,
Progress& progress)
{
UpdateObejctTransformState state;
state.need_motion = scene->need_motion(device->info.advanced_shading);
state.have_motion = false;
state.have_curves = false;
state.scene = scene;
state.queue_start_object = 0;
state.object_flag = object_flag;
state.objects = dscene->objects.resize(OBJECT_SIZE*scene->objects.size());
if(state.need_motion == Scene::MOTION_PASS) {
state.objects_vector = dscene->objects_vector.resize(OBJECT_VECTOR_SIZE*scene->objects.size());
}
else {
state.objects_vector = NULL;
}
/* Particle system device offsets
* 0 is dummy particle, index starts at 1.
*/
int numparticles = 1;
foreach(ParticleSystem *psys, scene->particle_systems) {
state.particle_offset[psys] = numparticles;
numparticles += psys->particles.size();
}
/* NOTE: If it's just a handful of objects we deal with them in a single
* thread to avoid threading overhead. However, this threshold is might
* need some tweaks to make mid-complex scenes optimal.
*/
if(scene->objects.size() < 64) {
int object_index = 0;
foreach(Object *ob, scene->objects) {
device_update_object_transform(&state, ob, object_index);
object_index++;
if(progress.get_cancel()) {
return;
}
}
}
else {
const int num_threads = TaskScheduler::num_threads();
TaskPool pool;
for(int i = 0; i < num_threads; ++i) {
pool.push(function_bind(
&ObjectManager::device_update_object_transform_task,
this,
&state));
}
pool.wait_work();
if(progress.get_cancel()) {
return;
}
}
device->tex_alloc("__objects", dscene->objects);
if(state.need_motion == Scene::MOTION_PASS) {
device->tex_alloc("__objects_vector", dscene->objects_vector);
}
dscene->data.bvh.have_motion = state.have_motion;
dscene->data.bvh.have_curves = state.have_curves;
dscene->data.bvh.have_instancing = true;
}
void ObjectManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
{
if(!need_update)
return;
VLOG(1) << "Total " << scene->objects.size() << " objects.";
device_free(device, dscene);
if(scene->objects.size() == 0)
return;
/* object info flag */
uint *object_flag = dscene->object_flag.resize(scene->objects.size());
/* set object transform matrices, before applying static transforms */
progress.set_status("Updating Objects", "Copying Transformations to device");
device_update_transforms(device, dscene, scene, object_flag, progress);
if(progress.get_cancel()) return;
/* prepare for static BVH building */
/* todo: do before to support getting object level coords? */
if(scene->params.bvh_type == SceneParams::BVH_STATIC) {
progress.set_status("Updating Objects", "Applying Static Transformations");
apply_static_transforms(dscene, scene, object_flag, progress);
}
}
void ObjectManager::device_update_flags(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress& /*progress*/,
bool bounds_valid)
{
if(!need_update && !need_flags_update)
return;
need_update = false;
need_flags_update = false;
if(scene->objects.size() == 0)
return;
/* object info flag */
uint *object_flag = dscene->object_flag.get_data();
vector<Object *> volume_objects;
bool has_volume_objects = false;
foreach(Object *object, scene->objects) {
if(object->mesh->has_volume) {
if(bounds_valid) {
volume_objects.push_back(object);
}
has_volume_objects = true;
}
}
int object_index = 0;
foreach(Object *object, scene->objects) {
if(object->mesh->has_volume) {
object_flag[object_index] |= SD_OBJECT_HAS_VOLUME;
}
else {
object_flag[object_index] &= ~SD_OBJECT_HAS_VOLUME;
}
if(object->is_shadow_catcher) {
object_flag[object_index] |= SD_OBJECT_SHADOW_CATCHER;
}
else {
object_flag[object_index] &= ~SD_OBJECT_SHADOW_CATCHER;
}
if(bounds_valid) {
foreach(Object *volume_object, volume_objects) {
if(object == volume_object) {
continue;
}
if(object->bounds.intersects(volume_object->bounds)) {
object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME;
break;
}
}
}
else if(has_volume_objects) {
/* Not really valid, but can't make more reliable in the case
* of bounds not being up to date.
*/
object_flag[object_index] |= SD_OBJECT_INTERSECTS_VOLUME;
}
++object_index;
}
/* allocate object flag */
device->tex_alloc("__object_flag", dscene->object_flag);
}
void ObjectManager::device_update_patch_map_offsets(Device *device, DeviceScene *dscene, Scene *scene)
{
2016-10-24 10:26:12 +00:00
if(scene->objects.size() == 0) {
return;
2016-10-24 10:26:12 +00:00
}
uint4* objects = (uint4*)dscene->objects.get_data();
bool update = false;
int object_index = 0;
foreach(Object *object, scene->objects) {
int offset = object_index*OBJECT_SIZE + 11;
Mesh* mesh = object->mesh;
if(mesh->patch_table) {
uint patch_map_offset = 2*(mesh->patch_table_offset + mesh->patch_table->total_size() -
mesh->patch_table->num_nodes * PATCH_NODE_SIZE) - mesh->patch_offset;
if(objects[offset].x != patch_map_offset) {
objects[offset].x = patch_map_offset;
update = true;
}
}
object_index++;
}
if(update) {
device->tex_free(dscene->objects);
device->tex_alloc("__objects", dscene->objects);
}
}
void ObjectManager::device_free(Device *device, DeviceScene *dscene)
{
device->tex_free(dscene->objects);
dscene->objects.clear();
device->tex_free(dscene->objects_vector);
dscene->objects_vector.clear();
device->tex_free(dscene->object_flag);
dscene->object_flag.clear();
}
void ObjectManager::apply_static_transforms(DeviceScene *dscene, Scene *scene, uint *object_flag, Progress& progress)
{
/* todo: normals and displacement should be done before applying transform! */
/* todo: create objects/meshes in right order! */
/* counter mesh users */
map<Mesh*, int> mesh_users;
#ifdef __OBJECT_MOTION__
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
bool apply_to_motion = need_motion != Scene::MOTION_PASS;
#else
bool motion_blur = false;
bool apply_to_motion = false;
#endif
int i = 0;
bool have_instancing = false;
foreach(Object *object, scene->objects) {
map<Mesh*, int>::iterator it = mesh_users.find(object->mesh);
if(it == mesh_users.end())
mesh_users[object->mesh] = 1;
else
it->second++;
}
if(progress.get_cancel()) return;
/* apply transforms for objects with single user meshes */
foreach(Object *object, scene->objects) {
/* Annoying feedback loop here: we can't use is_instanced() because
* it'll use uninitialized transform_applied flag.
*
* Could be solved by moving reference counter to Mesh.
*/
if((mesh_users[object->mesh] == 1 && !object->mesh->has_surface_bssrdf) &&
!object->mesh->has_true_displacement() && object->mesh->subdivision_type == Mesh::SUBDIVISION_NONE)
{
if(!(motion_blur && object->use_motion)) {
if(!object->mesh->transform_applied) {
object->apply_transform(apply_to_motion);
object->mesh->transform_applied = true;
if(progress.get_cancel()) return;
}
object_flag[i] |= SD_OBJECT_TRANSFORM_APPLIED;
if(object->mesh->transform_negative_scaled)
object_flag[i] |= SD_OBJECT_NEGATIVE_SCALE_APPLIED;
}
else
have_instancing = true;
}
else
have_instancing = true;
i++;
}
dscene->data.bvh.have_instancing = have_instancing;
}
void ObjectManager::tag_update(Scene *scene)
{
need_update = true;
scene->curve_system_manager->need_update = true;
scene->mesh_manager->need_update = true;
scene->light_manager->need_update = true;
}
CCL_NAMESPACE_END