blender/intern/cycles/kernel/closure/bsdf_hair_principled.h

499 lines
16 KiB
C
Raw Normal View History

/*
* Copyright 2018 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef __KERNEL_CPU__
# include <fenv.h>
#endif
#include "kernel/kernel_color.h"
#ifndef __BSDF_HAIR_PRINCIPLED_H__
# define __BSDF_HAIR_PRINCIPLED_H__
CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct PrincipledHairExtra {
/* Geometry data. */
float4 geom;
} PrincipledHairExtra;
typedef ccl_addr_space struct PrincipledHairBSDF {
SHADER_CLOSURE_BASE;
/* Absorption coefficient. */
float3 sigma;
/* Variance of the underlying logistic distribution. */
float v;
/* Scale factor of the underlying logistic distribution. */
float s;
/* Cuticle tilt angle. */
float alpha;
/* IOR. */
float eta;
/* Effective variance for the diffuse bounce only. */
float m0_roughness;
/* Extra closure. */
PrincipledHairExtra *extra;
} PrincipledHairBSDF;
static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledHairBSDF),
"PrincipledHairBSDF is too large!");
static_assert(sizeof(ShaderClosure) >= sizeof(PrincipledHairExtra),
"PrincipledHairExtra is too large!");
ccl_device_inline float cos_from_sin(const float s)
{
return safe_sqrtf(1.0f - s * s);
}
/* Gives the change in direction in the normal plane for the given angles and p-th-order
* scattering. */
ccl_device_inline float delta_phi(int p, float gamma_o, float gamma_t)
{
return 2.0f * p * gamma_t - 2.0f * gamma_o + p * M_PI_F;
}
/* Remaps the given angle to [-pi, pi]. */
ccl_device_inline float wrap_angle(float a)
{
while (a > M_PI_F) {
a -= M_2PI_F;
}
while (a < -M_PI_F) {
a += M_2PI_F;
}
return a;
}
/* Logistic distribution function. */
ccl_device_inline float logistic(float x, float s)
{
float v = expf(-fabsf(x) / s);
return v / (s * sqr(1.0f + v));
}
/* Logistic cumulative density function. */
ccl_device_inline float logistic_cdf(float x, float s)
{
float arg = -x / s;
/* expf() overflows if arg >= 89.0. */
if (arg > 88.0f) {
return 0.0f;
}
else {
return 1.0f / (1.0f + expf(arg));
}
}
/* Numerical approximation to the Bessel function of the first kind. */
ccl_device_inline float bessel_I0(float x)
{
x = sqr(x);
float val = 1.0f + 0.25f * x;
float pow_x_2i = sqr(x);
uint64_t i_fac_2 = 1;
int pow_4_i = 16;
for (int i = 2; i < 10; i++) {
i_fac_2 *= i * i;
float newval = val + pow_x_2i / (pow_4_i * i_fac_2);
if (val == newval) {
return val;
}
val = newval;
pow_x_2i *= x;
pow_4_i *= 4;
}
return val;
}
/* Logarithm of the Bessel function of the first kind. */
ccl_device_inline float log_bessel_I0(float x)
{
if (x > 12.0f) {
/* log(1/x) == -log(x) iff x > 0.
* This is only used with positive cosines */
return x + 0.5f * (1.f / (8.0f * x) - M_LN_2PI_F - logf(x));
}
else {
return logf(bessel_I0(x));
}
}
/* Logistic distribution limited to the interval [-pi, pi]. */
ccl_device_inline float trimmed_logistic(float x, float s)
{
/* The logistic distribution is symmetric and centered around zero,
* so logistic_cdf(x, s) = 1 - logistic_cdf(-x, s).
* Therefore, logistic_cdf(x, s)-logistic_cdf(-x, s) = 1 - 2*logistic_cdf(-x, s) */
float scaling_fac = 1.0f - 2.0f * logistic_cdf(-M_PI_F, s);
float val = logistic(x, s);
return safe_divide(val, scaling_fac);
}
/* Sampling function for the trimmed logistic function. */
ccl_device_inline float sample_trimmed_logistic(float u, float s)
{
float cdf_minuspi = logistic_cdf(-M_PI_F, s);
float x = -s * logf(1.0f / (u * (1.0f - 2.0f * cdf_minuspi) + cdf_minuspi) - 1.0f);
return clamp(x, -M_PI_F, M_PI_F);
}
/* Azimuthal scattering function Np. */
ccl_device_inline float azimuthal_scattering(
float phi, int p, float s, float gamma_o, float gamma_t)
{
float phi_o = wrap_angle(phi - delta_phi(p, gamma_o, gamma_t));
float val = trimmed_logistic(phi_o, s);
return val;
}
/* Longitudinal scattering function Mp. */
ccl_device_inline float longitudinal_scattering(
float sin_theta_i, float cos_theta_i, float sin_theta_o, float cos_theta_o, float v)
{
float inv_v = 1.0f / v;
float cos_arg = cos_theta_i * cos_theta_o * inv_v;
float sin_arg = sin_theta_i * sin_theta_o * inv_v;
if (v <= 0.1f) {
float i0 = log_bessel_I0(cos_arg);
float val = expf(i0 - sin_arg - inv_v + 0.6931f + logf(0.5f * inv_v));
return val;
}
else {
float i0 = bessel_I0(cos_arg);
float val = (expf(-sin_arg) * i0) / (sinhf(inv_v) * 2.0f * v);
return val;
}
}
/* Combine the three values using their luminances. */
ccl_device_inline float4 combine_with_energy(KernelGlobals *kg, float3 c)
{
return make_float4(c.x, c.y, c.z, linear_rgb_to_gray(kg, c));
}
# ifdef __HAIR__
/* Set up the hair closure. */
ccl_device int bsdf_principled_hair_setup(ShaderData *sd, PrincipledHairBSDF *bsdf)
{
bsdf->type = CLOSURE_BSDF_HAIR_PRINCIPLED_ID;
bsdf->v = clamp(bsdf->v, 0.001f, 1.0f);
bsdf->s = clamp(bsdf->s, 0.001f, 1.0f);
/* Apply Primary Reflection Roughness modifier. */
bsdf->m0_roughness = clamp(bsdf->m0_roughness * bsdf->v, 0.001f, 1.0f);
/* Map from roughness_u and roughness_v to variance and scale factor. */
bsdf->v = sqr(0.726f * bsdf->v + 0.812f * sqr(bsdf->v) + 3.700f * pow20(bsdf->v));
bsdf->s = (0.265f * bsdf->s + 1.194f * sqr(bsdf->s) + 5.372f * pow22(bsdf->s)) * M_SQRT_PI_8_F;
bsdf->m0_roughness = sqr(0.726f * bsdf->m0_roughness + 0.812f * sqr(bsdf->m0_roughness) +
3.700f * pow20(bsdf->m0_roughness));
/* Compute local frame, aligned to curve tangent and ray direction. */
float3 X = safe_normalize(sd->dPdu);
float3 Y = safe_normalize(cross(X, sd->I));
float3 Z = safe_normalize(cross(X, Y));
/* TODO: the solution below works where sd->Ng is the normal
* pointing from the center of the curve to the shading point.
* It doesn't work for triangles, see https://developer.blender.org/T43625 */
/* h -1..0..1 means the rays goes from grazing the hair, to hitting it at
* the center, to grazing the other edge. This is the sine of the angle
* between sd->Ng and Z, as seen from the tangent X. */
/* TODO: we convert this value to a cosine later and discard the sign, so
* we could probably save some operations. */
float h = dot(cross(sd->Ng, X), Z);
kernel_assert(fabsf(h) < 1.0f + 1e-4f);
kernel_assert(isfinite3_safe(Y));
kernel_assert(isfinite_safe(h));
bsdf->extra->geom = make_float4(Y.x, Y.y, Y.z, h);
return SD_BSDF | SD_BSDF_HAS_EVAL | SD_BSDF_NEEDS_LCG;
}
# endif /* __HAIR__ */
/* Given the Fresnel term and transmittance, generate the attenuation terms for each bounce. */
ccl_device_inline void hair_attenuation(KernelGlobals *kg, float f, float3 T, float4 *Ap)
{
/* Primary specular (R). */
Ap[0] = make_float4(f, f, f, f);
/* Transmission (TT). */
float3 col = sqr(1.0f - f) * T;
Ap[1] = combine_with_energy(kg, col);
/* Secondary specular (TRT). */
col *= T * f;
Ap[2] = combine_with_energy(kg, col);
/* Residual component (TRRT+). */
col *= safe_divide_color(T * f, make_float3(1.0f, 1.0f, 1.0f) - T * f);
Ap[3] = combine_with_energy(kg, col);
/* Normalize sampling weights. */
float totweight = Ap[0].w + Ap[1].w + Ap[2].w + Ap[3].w;
float fac = safe_divide(1.0f, totweight);
Ap[0].w *= fac;
Ap[1].w *= fac;
Ap[2].w *= fac;
Ap[3].w *= fac;
}
/* Given the tilt angle, generate the rotated theta_i for the different bounces. */
ccl_device_inline void hair_alpha_angles(float sin_theta_i,
float cos_theta_i,
float alpha,
float *angles)
{
float sin_1alpha = sinf(alpha);
float cos_1alpha = cos_from_sin(sin_1alpha);
float sin_2alpha = 2.0f * sin_1alpha * cos_1alpha;
float cos_2alpha = sqr(cos_1alpha) - sqr(sin_1alpha);
float sin_4alpha = 2.0f * sin_2alpha * cos_2alpha;
float cos_4alpha = sqr(cos_2alpha) - sqr(sin_2alpha);
angles[0] = sin_theta_i * cos_2alpha + cos_theta_i * sin_2alpha;
angles[1] = fabsf(cos_theta_i * cos_2alpha - sin_theta_i * sin_2alpha);
angles[2] = sin_theta_i * cos_1alpha - cos_theta_i * sin_1alpha;
angles[3] = fabsf(cos_theta_i * cos_1alpha + sin_theta_i * sin_1alpha);
angles[4] = sin_theta_i * cos_4alpha - cos_theta_i * sin_4alpha;
angles[5] = fabsf(cos_theta_i * cos_4alpha + sin_theta_i * sin_4alpha);
}
/* Evaluation function for our shader. */
ccl_device float3 bsdf_principled_hair_eval(KernelGlobals *kg,
const ShaderData *sd,
const ShaderClosure *sc,
const float3 omega_in,
float *pdf)
{
kernel_assert(isfinite3_safe(sd->P) && isfinite_safe(sd->ray_length));
const PrincipledHairBSDF *bsdf = (const PrincipledHairBSDF *)sc;
float3 Y = float4_to_float3(bsdf->extra->geom);
float3 X = safe_normalize(sd->dPdu);
kernel_assert(fabsf(dot(X, Y)) < 1e-3f);
float3 Z = safe_normalize(cross(X, Y));
float3 wo = make_float3(dot(sd->I, X), dot(sd->I, Y), dot(sd->I, Z));
float3 wi = make_float3(dot(omega_in, X), dot(omega_in, Y), dot(omega_in, Z));
float sin_theta_o = wo.x;
float cos_theta_o = cos_from_sin(sin_theta_o);
float phi_o = atan2f(wo.z, wo.y);
float sin_theta_t = sin_theta_o / bsdf->eta;
float cos_theta_t = cos_from_sin(sin_theta_t);
float sin_gamma_o = bsdf->extra->geom.w;
float cos_gamma_o = cos_from_sin(sin_gamma_o);
float gamma_o = safe_asinf(sin_gamma_o);
float sin_gamma_t = sin_gamma_o * cos_theta_o / sqrtf(sqr(bsdf->eta) - sqr(sin_theta_o));
float cos_gamma_t = cos_from_sin(sin_gamma_t);
float gamma_t = safe_asinf(sin_gamma_t);
float3 T = exp3(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
float4 Ap[4];
hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
float sin_theta_i = wi.x;
float cos_theta_i = cos_from_sin(sin_theta_i);
float phi_i = atan2f(wi.z, wi.y);
float phi = phi_i - phi_o;
float angles[6];
hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
float4 F;
float Mp, Np;
/* Primary specular (R). */
Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
F = Ap[0] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Transmission (TT). */
Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f * bsdf->v);
Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
F += Ap[1] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Secondary specular (TRT). */
Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
F += Ap[2] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Residual component (TRRT+). */
Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = M_1_2PI_F;
F += Ap[3] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
*pdf = F.w;
return float4_to_float3(F);
}
/* Sampling function for the hair shader. */
ccl_device int bsdf_principled_hair_sample(KernelGlobals *kg,
const ShaderClosure *sc,
ShaderData *sd,
float randu,
float randv,
float3 *eval,
float3 *omega_in,
float3 *domega_in_dx,
float3 *domega_in_dy,
float *pdf)
{
PrincipledHairBSDF *bsdf = (PrincipledHairBSDF *)sc;
float3 Y = float4_to_float3(bsdf->extra->geom);
float3 X = safe_normalize(sd->dPdu);
kernel_assert(fabsf(dot(X, Y)) < 1e-3f);
float3 Z = safe_normalize(cross(X, Y));
float3 wo = make_float3(dot(sd->I, X), dot(sd->I, Y), dot(sd->I, Z));
float2 u[2];
u[0] = make_float2(randu, randv);
u[1].x = lcg_step_float_addrspace(&sd->lcg_state);
u[1].y = lcg_step_float_addrspace(&sd->lcg_state);
float sin_theta_o = wo.x;
float cos_theta_o = cos_from_sin(sin_theta_o);
float phi_o = atan2f(wo.z, wo.y);
float sin_theta_t = sin_theta_o / bsdf->eta;
float cos_theta_t = cos_from_sin(sin_theta_t);
float sin_gamma_o = bsdf->extra->geom.w;
float cos_gamma_o = cos_from_sin(sin_gamma_o);
float gamma_o = safe_asinf(sin_gamma_o);
float sin_gamma_t = sin_gamma_o * cos_theta_o / sqrtf(sqr(bsdf->eta) - sqr(sin_theta_o));
float cos_gamma_t = cos_from_sin(sin_gamma_t);
float gamma_t = safe_asinf(sin_gamma_t);
float3 T = exp3(-bsdf->sigma * (2.0f * cos_gamma_t / cos_theta_t));
float4 Ap[4];
hair_attenuation(kg, fresnel_dielectric_cos(cos_theta_o * cos_gamma_o, bsdf->eta), T, Ap);
int p = 0;
for (; p < 3; p++) {
if (u[0].x < Ap[p].w) {
break;
}
u[0].x -= Ap[p].w;
}
float v = bsdf->v;
if (p == 1) {
v *= 0.25f;
}
if (p >= 2) {
v *= 4.0f;
}
u[1].x = max(u[1].x, 1e-5f);
float fac = 1.0f + v * logf(u[1].x + (1.0f - u[1].x) * expf(-2.0f / v));
float sin_theta_i = -fac * sin_theta_o +
cos_from_sin(fac) * cosf(M_2PI_F * u[1].y) * cos_theta_o;
float cos_theta_i = cos_from_sin(sin_theta_i);
float angles[6];
if (p < 3) {
hair_alpha_angles(sin_theta_i, cos_theta_i, -bsdf->alpha, angles);
sin_theta_i = angles[2 * p];
cos_theta_i = angles[2 * p + 1];
}
float phi;
if (p < 3) {
phi = delta_phi(p, gamma_o, gamma_t) + sample_trimmed_logistic(u[0].y, bsdf->s);
}
else {
phi = M_2PI_F * u[0].y;
}
float phi_i = phi_o + phi;
hair_alpha_angles(sin_theta_i, cos_theta_i, bsdf->alpha, angles);
float4 F;
float Mp, Np;
/* Primary specular (R). */
Mp = longitudinal_scattering(angles[0], angles[1], sin_theta_o, cos_theta_o, bsdf->m0_roughness);
Np = azimuthal_scattering(phi, 0, bsdf->s, gamma_o, gamma_t);
F = Ap[0] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Transmission (TT). */
Mp = longitudinal_scattering(angles[2], angles[3], sin_theta_o, cos_theta_o, 0.25f * bsdf->v);
Np = azimuthal_scattering(phi, 1, bsdf->s, gamma_o, gamma_t);
F += Ap[1] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Secondary specular (TRT). */
Mp = longitudinal_scattering(angles[4], angles[5], sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = azimuthal_scattering(phi, 2, bsdf->s, gamma_o, gamma_t);
F += Ap[2] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
/* Residual component (TRRT+). */
Mp = longitudinal_scattering(sin_theta_i, cos_theta_i, sin_theta_o, cos_theta_o, 4.0f * bsdf->v);
Np = M_1_2PI_F;
F += Ap[3] * Mp * Np;
kernel_assert(isfinite3_safe(float4_to_float3(F)));
*eval = float4_to_float3(F);
*pdf = F.w;
*omega_in = X * sin_theta_i + Y * cos_theta_i * cosf(phi_i) + Z * cos_theta_i * sinf(phi_i);
# ifdef __RAY_DIFFERENTIALS__
float3 N = safe_normalize(sd->I + *omega_in);
*domega_in_dx = (2 * dot(N, sd->dI.dx)) * N - sd->dI.dx;
*domega_in_dy = (2 * dot(N, sd->dI.dy)) * N - sd->dI.dy;
# endif
return LABEL_GLOSSY | ((p == 0) ? LABEL_REFLECT : LABEL_TRANSMIT);
}
/* Implements Filter Glossy by capping the effective roughness. */
ccl_device void bsdf_principled_hair_blur(ShaderClosure *sc, float roughness)
{
PrincipledHairBSDF *bsdf = (PrincipledHairBSDF *)sc;
bsdf->v = fmaxf(roughness, bsdf->v);
bsdf->s = fmaxf(roughness, bsdf->s);
bsdf->m0_roughness = fmaxf(roughness, bsdf->m0_roughness);
}
CCL_NAMESPACE_END
#endif /* __BSDF_HAIR_PRINCIPLED_H__ */