blender/intern/cycles/render/tile.cpp

234 lines
5.9 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "tile.h"
#include "util_algorithm.h"
#include "util_types.h"
CCL_NAMESPACE_BEGIN
namespace {
class TileComparator {
public:
TileComparator(TileOrder order, int2 center)
: order_(order),
center_(center)
{}
bool operator()(Tile &a, Tile &b)
{
switch(order_) {
case TILE_CENTER:
{
float2 dist_a = make_float2(center_.x - (a.x + a.w/2),
center_.y - (a.y + a.h/2));
float2 dist_b = make_float2(center_.x - (b.x + b.w/2),
center_.y - (b.y + b.h/2));
return dot(dist_a, dist_a) < dot(dist_b, dist_b);
}
case TILE_LEFT_TO_RIGHT:
return (a.x == b.x)? (a.y < b.y): (a.x < b.x);
case TILE_RIGHT_TO_LEFT:
return (a.x == b.x)? (a.y < b.y): (a.x > b.x);
case TILE_TOP_TO_BOTTOM:
return (a.y == b.y)? (a.x < b.x): (a.y > b.y);
case TILE_BOTTOM_TO_TOP:
default:
return (a.y == b.y)? (a.x < b.x): (a.y < b.y);
}
}
protected:
TileOrder order_;
int2 center_;
};
} /* namespace */
TileManager::TileManager(bool progressive_, int num_samples_, int2 tile_size_, int start_resolution_,
bool preserve_tile_device_, bool background_, TileOrder tile_order_, int num_devices_)
{
progressive = progressive_;
tile_size = tile_size_;
tile_order = tile_order_;
start_resolution = start_resolution_;
num_samples = num_samples_;
num_devices = num_devices_;
preserve_tile_device = preserve_tile_device_;
background = background_;
BufferParams buffer_params;
reset(buffer_params, 0);
}
TileManager::~TileManager()
{
}
void TileManager::reset(BufferParams& params_, int num_samples_)
{
params = params_;
int divider = 1;
int w = params.width, h = params.height;
if(start_resolution != INT_MAX) {
while(w*h > start_resolution*start_resolution) {
w = max(1, w/2);
h = max(1, h/2);
divider *= 2;
}
}
num_samples = num_samples_;
state.buffer = BufferParams();
state.sample = -1;
state.num_tiles = 0;
state.num_rendered_tiles = 0;
state.num_samples = 0;
state.resolution_divider = divider;
state.tiles.clear();
}
void TileManager::set_samples(int num_samples_)
{
num_samples = num_samples_;
}
/* If sliced is false, splits image into tiles and assigns equal amount of tiles to every render device.
* If sliced is true, slice image into as much pieces as how many devices are rendering this image. */
int TileManager::gen_tiles(bool sliced)
{
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
int2 center = make_int2(image_w/2, image_h/2);
state.tiles.clear();
int num_logical_devices = preserve_tile_device? num_devices: 1;
int num = min(image_h, num_logical_devices);
int slice_num = sliced? num: 1;
int tile_index = 0;
state.tiles.clear();
state.tiles.resize(num);
vector<list<Tile> >::iterator tile_list = state.tiles.begin();
for(int slice = 0; slice < slice_num; slice++) {
int slice_y = (image_h/slice_num)*slice;
int slice_h = (slice == slice_num-1)? image_h - slice*(image_h/slice_num): image_h/slice_num;
int tile_w = (tile_size.x >= image_w)? 1: (image_w + tile_size.x - 1)/tile_size.x;
int tile_h = (tile_size.y >= slice_h)? 1: (slice_h + tile_size.y - 1)/tile_size.y;
int tiles_per_device = (tile_w * tile_h + num - 1) / num;
int cur_device = 0, cur_tiles = 0;
for(int tile_y = 0; tile_y < tile_h; tile_y++) {
for(int tile_x = 0; tile_x < tile_w; tile_x++, tile_index++) {
int x = tile_x * tile_size.x;
int y = tile_y * tile_size.y;
int w = (tile_x == tile_w-1)? image_w - x: tile_size.x;
int h = (tile_y == tile_h-1)? slice_h - y: tile_size.y;
tile_list->push_back(Tile(tile_index, x, y + slice_y, w, h, sliced? slice: cur_device));
if(!sliced) {
cur_tiles++;
if(cur_tiles == tiles_per_device) {
tile_list->sort(TileComparator(tile_order, center));
tile_list++;
cur_tiles = 0;
cur_device++;
}
}
}
}
}
return tile_index;
}
void TileManager::set_tiles()
{
int resolution = state.resolution_divider;
int image_w = max(1, params.width/resolution);
int image_h = max(1, params.height/resolution);
state.num_tiles = gen_tiles(!background);
state.buffer.width = image_w;
state.buffer.height = image_h;
state.buffer.full_x = params.full_x/resolution;
state.buffer.full_y = params.full_y/resolution;
state.buffer.full_width = max(1, params.full_width/resolution);
state.buffer.full_height = max(1, params.full_height/resolution);
}
bool TileManager::next_tile(Tile& tile, int device)
{
int logical_device = preserve_tile_device? device: 0;
if((logical_device >= state.tiles.size()) || state.tiles[logical_device].empty())
return false;
tile = Tile(state.tiles[logical_device].front());
state.tiles[logical_device].pop_front();
state.num_rendered_tiles++;
return true;
}
bool TileManager::done()
{
return (state.sample+state.num_samples >= num_samples && state.resolution_divider == 1);
}
bool TileManager::next()
{
if(done())
return false;
if(progressive && state.resolution_divider > 1) {
state.sample = 0;
state.resolution_divider /= 2;
state.num_samples = 1;
set_tiles();
}
else {
state.sample++;
if(progressive)
state.num_samples = 1;
else
state.num_samples = num_samples;
state.resolution_divider = 1;
set_tiles();
}
return true;
}
CCL_NAMESPACE_END