You can specify a image name (starting with 'IM') instead of a material
name in VideoTexture.materialID() and return the material ID matching
this texture.
The advantage of this method is that is works with blender material
and UV texture. In case of UV texture, it grabs the internal material
corresponding to the faces that are assigned to this texture. In case
of blender material, it grabs the material that has an image texture
matching the name as first texture channel.
In both cases, the texture id used in VideoTexture.Texture() should be 0.
Ex:
matID = VideoTexture.materialID(obj,'IMvideo.png')
GameLogic.video = VideoTexture.Texture(obj, matID, 0)
The FFmpeg library allows to load image files. Although it is possible
to load images using the VideoFFmpeg class, it is not very efficient.
The new class VideoTexture.ImageFFmpeg is dedicated to image management.
Constructor:
-----------
VideoTexture.ImageFFmpeg('image_file_name')
Opens the file but does not load the texture yet.
The file name can also be a network address. It can also be a video
file name; in that case only the first image is loaded.
Methods:
-------
refresh(True)
Loads the image to texture.
You just need to call it once, the file is automatically closed after
that and calling refresh() again will have no effect.
reload('new_file_name')
Reloads the image (if new_file_name is omitted) or loads a new image.
The file is opened but the texture is not updated yet, you need
to call refresh() once to load the texture.
Attributes:
----------
status
returns the image status:
2 : file opened, texture not loaded
3 : file closed, texture loaded
image
returns the image data as a string of RGBA pixel
size
returns the image size [x,y]
scale
get/set the scale flag.
If the scale flag is False, the image is rescale to texture format
using gluScaleImage() function, slow but good quality.
If the scale flag is True, the image is rescaled using a fast but
less accurate algorithm.
flip
get/set Y-flip flag.
Set to True by default as FFmpeg always provides the image upside down
filter
get/set filter(s) on the image.
Example:
* The second opengl texture coordinate (gl_TexCoord[1]) are now filled
in as well, and will give canvas coordinates from 0.0 to 1.0. The
first texture coordinates still give the coordinates in the texture
that is being used, which may not match the canvas exactly, so both
coordinates are needed.
* Also optimization to allow using smaller texture sizes with multiple
smaller viewports.
* Print the detailed GLSL shader errors (once), for easier debugging.
The only compilation system that works for sure is the MSVC project files. I've tried my best to
update the other compilation system but I count on the community to check and fix them.
This is Zdeno Miklas video texture plugin ported to trunk.
The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html)
EXCEPT for the following:
The module name is changed to VideoTexture (instead of blendVideoTex).
A new (and only) video source is now available: VideoFFmpeg()
You must pass 1 to 4 arguments when you create it (you can use named arguments):
VideoFFmpeg(file) : play a video file
VideoFFmpeg(file, capture, rate, width, height) : start a live video capture
file:
In the first form, file is a video file name, relative to startup directory.
It can also be a URL, FFmpeg will happily stream a video from a network source.
In the second form, file is empty or is a hint for the format of the video capture.
In Windows, file is ignored and should be empty or not specified.
In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394.
The user specifies the type of device with the file parameter:
[<device_type>][:<standard>]
<device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l'
<standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc'
The driver name is constructed automatically from the device types:
v4l : /dev/video<capture>
dv1394: /dev/dv1394/<capture>
If you have different driver name, you can specify the driver name explicitely
instead of device type. Examples of valid file parameter:
/dev/v4l/video0:pal
/dev/ieee1394/1:ntsc
dv1394:ntsc
v4l:pal
:secam
capture:
Defines the index number of the capture source, starting from 0. The first capture device is always 0.
The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1.
rate:
the capture frame rate, by default 25 frames/sec
width:
height:
Width and height of the video capture in pixel, default value 0.
In Windows you must specify these values and they must fit with the capture device capability.
For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480,
you must specify one of these couple of values or the opening of the video source will fail.
In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height.
Simple example
**************
1. Texture definition script:
import VideoTexture
contr = GameLogic.getCurrentController()
obj = contr.getOwner()
if not hasattr(GameLogic, 'video'):
matID = VideoTexture.materialID(obj, 'MAVideoMat')
GameLogic.video = VideoTexture.Texture(obj, matID)
GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg')
# Streaming is also possible:
#GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg')
GameLogic.vidSrc.repeat = -1
# If the video dimensions are not a power of 2, scaling must be done before
# sending the texture to the GPU. This is done by default with gluScaleImage()
# but you can also use a faster, but less precise, scaling by setting scale
# to True. Best approach is to convert the video offline and set the dimensions right.
GameLogic.vidSrc.scale = True
# FFmpeg always delivers the video image upside down, so flipping is enabled automatically
#GameLogic.vidSrc.flip = True
if contr.getSensors()[0].isPositive():
GameLogic.video.source = GameLogic.vidSrc
GameLogic.vidSrc.play()
2. Texture refresh script:
obj = GameLogic.getCurrentController().getOwner()
if hasattr(GameLogic, 'video') != 0:
GameLogic.video.refresh(True)
You can download this demo here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blendhttp://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
Rename PHY_GetActiveScene() to KX_GetActiveScene(): more logical name
Add KX_GetActiveEngine()
new KX_KetsjiEngine::GetClockTime(void) to return current
render frame time: if the CPU does not keep up with the
frame rate, up to 5 consecutive logic frames are processed
between each render frame, so that the logic system stays
accurate even if the graphic system is slow. For the video
texture module, it is important to stay in sync with the
render frame: no need to update the texture for logic frame.
BL_Texture::swapTexture(): texture id manipulation
BL_Texture::getTex() : return material texture
Enable video support in ffmpeg for Linux.
- Code has been changed to reflect this (ie. deprecated functions are not anymore used)
* clean up the C and C++ compiler flags mess.
- in the environment construction of BlenderLib all the compile flag governing options have been split in the *C*, *CC* and *CXX* containing equivalents.
C is for C compiler only flags. CC is for C and C++ compiler flags and CXX is for C++ compiler only flags.
All the platform default config files need to be double checked and fixed wherever it looks necessary. Either DIY, or send me a note with needed changes.
- a start for the BlenderLib parameter list has been made - all the SConscripts need to be checked and modified to hand in flags properly.
* A theeth request: make -jN settable in the config file.
- I give you BF_NUMJOBS, which is set to 1 by default. In your user-config.py, set BF_NUMJOBS=4 to have 4 parallel jobs handled. Yay.
added gameObject.replaceMesh(meshname) - needed this for an automatically generated scene where 100's of objects would have needed logic bricks automatically added. Quicker to run replace mesh on all of them from 1 script.
This is an interesting bug since it is likely the cause of many other suspicious python crashes in blender.
sys.last_traceback would store references to PyObjects at the point of the crash.
it would only free these when sys.last_traceback was set again or on exit.
This caused many crashes in the BGE while testing since python would end up freeing invalid game objects -
When running scripts with errors, Blender would crash every 2-5 runs - in my test just now it crashed after 4 trys.
It could also segfault blender, when (for eg) you run a script that has objects referenced. then load a new file and run another script that raises an error.
In this case all the invalid Blender-Object's user counts would be decremented, even though none of the pointers were still valid.
source/blender/blenlib/intern/fileops.c - zero length strings would check for a slash before the strings first char.
source/gameengine/GameLogic/SCA_JoystickSensor.cpp - m_istrig_prev was not initialized
source/blender/src/editmesh.c - active face pointer was not set to NULL in free_editMesh()
- Forgot to make SCA_ISensor::UnregisterToManager() virtual to intercept active-inactive transition on collision sensor to clear colliders reference.
- Don't record collision on inactive sensor.
This situation occurs when an object with an inactive collision sensor collides with an object with an active collision sensor: the collision handler triggers both sensors.
The result of this bug was pending references that eventually cause temporary memory leak (until the sensor is reactivated).
- Reset hit object pointer at end of frame of touch sensor to avoid returning invalid pointer to getHitObject().
- Clear all references in KX_TouchSensor::m_colliders when the sensor is disabled to avoid loose references.
- Test GetSGNode() systematically for all KX_GameObject functions that can be called from python in case a python controller keeps a reference in GameLogic (bad practice anyway).
* Debug text drawing didn't disable textures correct leaving
texture state invalid, quite old issue.
* Multitexture materials didn't get enabled correct, recent bug.
Both pointed out by José Ignacio Romero, thanks!
Enable soft body collision clusters by default.
Add option to 'disable collision' button between soft body and rigid body connected by constraint (option was already available between two rigid bodies)
kept as the original file, but that can't work correct for solving
relative paths once a .blend in another directory is loaded. The
reason it went OK with the apricot tech demo is that the images there
were lib linked into the level file, which still worked.
Now it sets G.sce to the current loaded .blend file. Note that the
python config file path still uses the first loaded .blend file so it
looks in the same location each time.
Also added some NULL pointer checks in the joystick code because it
was crashing there on Mac, there's similar checks in related functions
so I'm assuming this was just a missed case.