Support for physics is done by skiping the modifiers that
don't support mapping to original mesh. This mapping is
required to report the hit polygon to the application
by the rayCast() function.
Support for graphics is done by using the same render
function that blender uses for the 3D view. This guantees
equal result.
Limitation: there is still a known bug if all these conditions are met:
- Display list enabled
- Old tex face with a several textures mapped to the same material
- no armature or shape keys
- active modifiers
In this case, only a part of the mesh will be rendered
with the wrong texture. To avoid this bug, use the GLSL
materials or make sure to have 1 material=1 texture in
your old tex face objects.
- ignore MSVC warnings when FREE_WINDOWS is defined to quiet warnings.
- the CMake flags were not being set correctly making blender have weirdo colors (no -funsigned-char).
Add support back for reinstancePhysics mesh, a frequently requested feature in the BGE forums.
from what I can tell Sumo supported this but bullet never did.
Currently only accessible via python at the moment.
- rigid body, dynamic, static types work.
- instanced physics meshes are modified too.
- compound shapes are not supported.
Physics mesh can be re-instanced from...
* shape keys & armature deformations
* subsurf (any other modifiers too)
* RAS_TexVert's (can be modified from python)
Moved the reinstancePhysicsMesh functions from RAS_MeshObject into KX_GameObject since the physics data is stored here.
video and blend file demo.
http://www.graphicall.org/ftp/ideasman42/reinstance.ogvhttp://www.graphicall.org/ftp/ideasman42/reinstance_demo.blend
This commit completes the support for modifiers in the BGE.
- The physic shape is generated according to the derived mesh.
This is true for all types of shapes and all types of
objects except soft body.
- Optimization for static derived mesh (mesh with modifiers
but no armature and no shape keys). Replicas will share
the derived mesh and the display list: less memory and
faster rendering. With this optimization, the static
derived mesh will render as fast as if the modifiers were
applied.
Known Limits:
- Sharing of mesh and display list is only possible between
in-game replicas or dupligroup. If you want to instantiate
multiple objects with modifiers, use dupligroup to ensure
best memory and GPU utilization.
- rayCast() will interact with the derived mesh as follow:
Hit position and hit normal are the real values according
to the derived mesh but the KX_PolyProxy object refers to
the original mesh. You should use it only to retrieve the
material.
- Dynamic derived mesh have very poor performance:
They use direct openGL calls for rendering (no support
for display list and vertex array) and they dont't share
the derived mesh memory. Always apply modifiers on dynamic
mesh for best performance.
- Time dependent modifiers are not supported.
- Modifiers are not supported for Bullet soft body.
Realtime modifiers applied on mesh objects will be supported in
the game engine with the following limitations:
- Only real time modifiers are supported (basically all of them!)
- Virtual modifiers resulting from parenting are not supported:
armature, curve, lattice. You can still use these modifiers
(armature is really not recommended) but in non parent mode.
The BGE has it's own parenting capability for armature.
- Modifiers are computed on the host (using blender modifier
stack).
- Modifiers are statically evaluated: any possible time dependency
in the modifiers is not supported (don't know enough about
modifiers to be more specific).
- Modifiers are reevaluated if the underlying mesh is deformed
due to shape action or armature action. Beware that this is
very CPU intensive; modifiers should really be used for static
objects only.
- Physics is still based on the original mesh: if you have a
mirror modifier, the physic shape will be limited to one half
of the resulting object. Therefore, the modifiers should
preferably be used on graphic objects.
- Scripts have no access to the modified mesh.
- Modifiers that are based on objects interaction (boolean,..)
will not be dependent on the objects position in the GE.
What you see in the 3D view is what you get in the GE regardless
on the object position, velocity, etc.
Besides that, the feature is compatible with all the BGE features
that affect meshes: armature action, shape action, relace mesh,
VideoTexture, add object, dupligroup.
Known problems:
- This feature is a bit hacky: the BGE uses the derived mesh draw
functions to display the object. This drawing method is a
bit slow and is not 100% compatible with the BGE. There may
be some problems in multi-texture mode: the multi-texture
coordinates are not sent to the GPU.
Texface and GLSL on the other hand should be fully supported.
- Culling is still based on the extend of the original mesh.
If you have a modifer that extends the size of the mesh,
the object may disappear while still in the view frustrum.
- Derived mesh is not shared between replicas.
The derived mesh is allocated and computed for each object
with modifiers, regardless if they are static replicas.
- Display list are not created on objects with modifiers.
I should be able to fix the above problems before release.
However, the feature is already useful for game development.
Once you are ready to release the game, you can apply the modifiers
to get back display list support and mesh sharing capability.
MSVC, scons, Cmake, makefile updated.
Enjoy
/benoit
Added Bullet/Gimpact concave collision detection to Blender. If your build system isn't updated yet, please add extern/bullet2/src/BulletCollision/Gimpact/*
This allows moving/dynamic concave triangle meshes (decomposing meshes into compound convex shapes, and using 'compound' shapes is still preferred)
set a fake world transform for game soft bodies, based on center of the AABB, so visiblity and some game logic works. note: this world transform is not smooth.
Shape Action are now supported in the BGE. A new type of actuator "Shape Action" is available on mesh objects. It can be combined with Action actuator on parent armature. Only relative keys are supported. All the usual action options are available: type, blending, priority, Python API. Only actions with shape channels should be specified of course, otherwise the actuator has no effect. Shape action will still work after a mesh replacement provided that the new mesh has compatible shape keys.
(adding)
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
also the Makefile.in's were from previous patch adding
the system depend stuff to configure.ac
Kent
--
mein@cs.umn.edu