vector in perspective mode. This is default OpenGL behavior, but
by now this optimization is really insignificant. Works in both
the 3d view and game engine.
This patch modifies the way the setParent actuator and KX_GameObject::setParent() function
works when parenting to a compound object: the collision shape of the object being parented
is dynamically added to the coumpound shape.
Similarly, unparenting an object from a compound object will cause the child collision shape
to be dynamically removed from the parent shape provided that is was previously added with
setParent.
Note: * This also works if the object is parented to a child of a compound object: the
collision shape is added to the compound shape of the top parent.
* The collision shape is added with the transformation (position, scale and orientation)
it had at the time of the parenting.
* The child shape is rigidly attached to the compound shape, the transformation is not
affected by any further change in position/scale/orientation of the child object.
* While the child shape is added to the compound shape, the child object is removed from
the dynamic world to avoid superposition of shapes (one for the object itself and
one for the compound child shape). This means that collision sensors on the child
object are disabled while the child object is parent to a compound object.
* There is no difference when setParent is used on a non-compound object: the child
object is automatically changed to a static ghost object to avoid bad interaction
with the parent shape; collision sensors on the child object continue to be active
while the object is parented.
* The child shape dynamically added to a compound shape modifies the inertia of the
compound object but not the mass. It participates to collision detection as any other
"static" child shape.
* Value clamping to min/max is now supported as an option for integer, float
and string attribute (for string clamping=trim to max length)
* Post check function now take PyAttributeDef parameter so that more
generic function can be written.
* Definition of SCA_ILogicBrick::CheckProperty() function to check that
a string attribute contains a valid property name of the parent game object.
* Definition of enum attribute vi KX_PYATTRIBUTE_ENUM... macros.
Enum are handled just like integer but to be totally paranoid, the sizeof()
of the enum member is check at run time to match integer size.
* More bricks updated to use the framework.
The principle is to replace most get/set methods of logic bricks by direct property access.
To make porting of game code easier, the properties have usually the same type and use than
the return values/parameters of the get/set methods.
More details on http://wiki.blender.org/index.php/GameEngineDev/Python_API_Clean_Up
Old methods are still available but will produce deprecation warnings on the console:
"<method> is deprecated, use the <property> property instead"
You can avoid these messages by turning on the "Ignore deprecation warnings" option in Game menu.
PyDoc is updated to include the new properties and display a deprecation warning
for the get/set methods that are being deprecated.
#18045] [patch] A patch that exposes the rest of the motion functions of KX_GameObject to Python.
*applyForce => setForce
*applyTorque => setTorque
*applyRotation => setDRot
*applyMovement => setDLoc
The new class VideoTexture.ImageMirror() is available to perform
automatic mirror rendering.
Constructor:
VideoTexture.ImageMirror(scene,observer,mirror,material)
scene: reference to the scene that will be rendered.
Both observer and mirror must be part of that scene.
observer: reference to a game object used as view point for
mirror rendering: the scene will be rendered through
the mirror as if the active camera was at the observer
location. Usually the observer is the active camera
but you can use any game obejct.
mirror: reference to the mesh object holding the mirror.
material: material ID of the mirror texture as returned by
VideoTexture.materialID(). The mirror is formed by
the polygons mapped to that material.
There are no specific methods or attributes. ImageMirror inherits
all methods and attributes from ImageRender. You must refresh the
parent VideoTexture.Texture object regularly to update the mirror
rendering.
Guidelines on how to create a working mirror:
- Use a texture that is specific to the mirror so that the mirror
rendering only appears on the mirror.
- The mirror must be planar; the algorithm works well only for planar
or quasi planar mirror. For spherical mirror, you will get better
results with ImageRender and a camera at the center of the mirror.
ImageMirror automatically computes the mirror orientation and
position. The mirror doesn't need to be rectangular, it can be
circular or take any form provided it is planar.
- The mirror up direction must be along the Z axis in local mesh
coordinates. If the mirror is not vertical, ImageMirror will
compute the up direction as being the projection of the Z axis
on the mirror plane.
- UV mapping must be set right to get correct mirror rendering:
- make a planar projection of the mirror polygons (Unwrap or projection from view)
- eventually rotate the projection so that UV up direction corresponds to the mesh Z axis
- scale the projection so that the extreme points touch the border of the texture
- flip the UV projection horizontally (scale -1 on X axis). This is needed
because the mirror texture is rendered from the back of the mirror and
thus is reversed from the view point of the observer. Horizontal flip
in the UV map restores the correct orientation.
Besides these simple rules, the mirror rendering is completely automatic.
In particular, you don't need to allocate a camera for the rendering,
ImageMirror creates dynamically a camera for that. The reflection is correct
even on large angles. The mirror can be a dynamic and moving object, the
algorithm always computes the correct camera position based on observer
relative position. You don't have to worry about mirror position in the scene:
the algorithm automatically computes the camera frustum so that any object
behind the mirror is not rendered.
Warnings:
- observer and mirror are references to game objects. ImageMirror keeps
a pointer to them but does not increment the reference count. You must ensure
that these game objects are not deleted as long as you refresh() the ImageMirror
object. You must release the ImageMirror object before you delete the game
objects. To release the ImageMirror object (normally stored in GameLogic),
just assign it to None.
- Mirror rendering is automatically skipped when the observer is behind the mirror
but it is not disabled when the mirror is out of sight of the observer.
You should only refresh the mirror when you know that the observer is likely to see it.
For example, no need to refresh a car inner mirror when the player is not in the car.
Example:
contr = GameLogic.getCurrentController()
# object holding the mirror
mirror = contr.getOwner()
scene = GameLogic.getCurrentScene()
# observer will be the active camere
camera = scene.getObjectList()['OBCamera']
matID = VideoTexture.materialID(mirror, 'IMmirror.png')
GameLogic.mirror = VideoTexture.Texture(mirror, matID)
GameLogic.mirror.source = VideoTexture.ImageMirror(scene,camera,mirror,matID)
# to render the mirror, just call GameLogic.mirror.refresh(True) on each frame.
You can download a demo game (with a video file) here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.zip
For those who have already downloaded the demo, you can just update the blend file:
http://home.scarlet.be/~tsi46445/blender/MirrorTextureDemo.blend
The new class VideoTexture.ImageRender() is available to perform
render to texture in the GE.
Constructor:
VideoTexture.ImageRender(scene,cam)
cam : camera object that will be used for the render.
It must be an inactive camera.
scene: reference to the scene that will be rendered.
The camera must be part of that scene.
Returns an object that can be used as a source of a VideoTexture.Texture object
Methods: none
Attributes:
background:
4-tuple representing the background color of the rendering
as RGBA color components, each component being an integer
between 0 and 255.
Default value = [0,0,255,255] (=saturated blue)
Note: athough the alpha component can be specified, it is not
supported at the moment, the alpha channel of the rendered
texture will always be 255. You can however introduce an
alpha channel by appending a FilterBlueScreen() filter, it
will set the alpha to 0 (transparent) on all pixels that were
not rendered.
capsize:
2-tuple representing the size of the render area as [x,y] number of pixels.
Default value = largest rectangle with power of 2 dimensions that fits in the canvas
You may want to reduce the render area to increase performance. For example,
a render area of [256,128] is probably sufficient to implement a car inner mirror.
For best performance, use power of 2 dimensions and don't set any filter: this
allows direct transfer between the GPU frame buffer and texture memory
without going through the host.
alpha:
Boolean indicating if the render alpha channel should be copied to the texture.
Default value: False
Experimental, do not use.
whole:
Boolean indicating if the entire canvas should be used for the rendering.
Default value: False
Note: There is no reason to set this attribute to True: the rendering will
in any case be scaled down to the largest rectangle with power of 2
dimensions before transfering to the texture.
Attributes inherited from the ImageBase class:
image : image binary data, read-only
size : [x,y] size of the texture, read-only
scale : set to True for fast scale down in case the render area dimensions are not power of 2
flip : set to True for vertical flip.
filter: set a post-processing filter on the render.
Notes:
* Aspect Ratio
For consistent results in Blender and Blenderplayer, the same aspect ratio used
by Blender to draw the camera viewport (Scene(F10)->Format tab->Size X/Size Y)
is also used during the rendering. You can control the portion of the scene that
will be rendered by "looking through the camera": the zone inside the outer dotted
rectangle will be rendered to the texture.
In order to reproduce the scene without X/Y distortion, you must apply the texture
on an object or portion of object that has the same aspect ratio.
* Order of rendering
The rendereing is performed when you call the refresh() method of the parent
Texture object. This happens outside the normal frame rendering and will have no
effect on it.
However, if you want to use ImageViewport and ImageRender at the same time, be
sure to refresh the viewport texture before the render texture because the latter
will destroy the frame buffer that is used by the former to update the texture.
* Scene status
The meshes are not updated during the render to texture: the rendered texture
is one frame late to the rendered frame with regards to mesh deformation.
* Example:
cont = GameLogic.getCurrentController()
# object that receives the texture
obj = contr.getOwner()
scene = GameLogic.getCurrentScene()
# camera used for the render
tvcam = scene.getObjectList()['OBtvcam']
# assume obj has some faces UV assigned to tv.png
matID = VideoTexture.materialID(obj, 'IMtv.png')
GameLogic.tv = VideoTexture.Texture(obj, matID)
GameLogic.tv.source = VideoTexture.ImageRender(scene,tvcam)
GameLogic.tv.source.capsize = [256,256]
# to render the texture, just call GameLogic.tv.refresh(True) on each frame.
You can download a demo game (with a video file) here:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.zip
For those who have already downloaded the demo, you can just update the blend file:
http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend
to compile blender with gcc on IRIX, IRIX_USE_GCC needs to be set to true in
user-def.mk.
Other changes related to irix:
* compile solid from extern/
* don't build plugins (yet) with "make release" when using gcc (the shell
script used assumes MIPSpro is installed)
* use statvfs instead of statfs on irix, like done on solaris
* use external libs from $(LCGDIR) instead of /usr/freeware
* use glew header files from $(LCGDIR)/glew instead of the ones installed on
the system (this applies to other platforms as well)
* ffmpeg support currently is disabled on irix
You can specify a image name (starting with 'IM') instead of a material
name in VideoTexture.materialID() and return the material ID matching
this texture.
The advantage of this method is that is works with blender material
and UV texture. In case of UV texture, it grabs the internal material
corresponding to the faces that are assigned to this texture. In case
of blender material, it grabs the material that has an image texture
matching the name as first texture channel.
In both cases, the texture id used in VideoTexture.Texture() should be 0.
Ex:
matID = VideoTexture.materialID(obj,'IMvideo.png')
GameLogic.video = VideoTexture.Texture(obj, matID, 0)
The FFmpeg library allows to load image files. Although it is possible
to load images using the VideoFFmpeg class, it is not very efficient.
The new class VideoTexture.ImageFFmpeg is dedicated to image management.
Constructor:
-----------
VideoTexture.ImageFFmpeg('image_file_name')
Opens the file but does not load the texture yet.
The file name can also be a network address. It can also be a video
file name; in that case only the first image is loaded.
Methods:
-------
refresh(True)
Loads the image to texture.
You just need to call it once, the file is automatically closed after
that and calling refresh() again will have no effect.
reload('new_file_name')
Reloads the image (if new_file_name is omitted) or loads a new image.
The file is opened but the texture is not updated yet, you need
to call refresh() once to load the texture.
Attributes:
----------
status
returns the image status:
2 : file opened, texture not loaded
3 : file closed, texture loaded
image
returns the image data as a string of RGBA pixel
size
returns the image size [x,y]
scale
get/set the scale flag.
If the scale flag is False, the image is rescale to texture format
using gluScaleImage() function, slow but good quality.
If the scale flag is True, the image is rescaled using a fast but
less accurate algorithm.
flip
get/set Y-flip flag.
Set to True by default as FFmpeg always provides the image upside down
filter
get/set filter(s) on the image.
Example: