blender/intern/cycles/kernel/kernel_path_subsurface.h
Brecht Van Lommel 095a01a73a Cycles: slightly improve BSDF sample stratification for path tracing.
Similar to what we did for area lights previously, this should help
preserve stratification when using multiple BSDFs in theory. Improvements
are not easily noticeable in practice though, because the number of BSDFs
is usually low. Still nice to eliminate one sampling dimension.
2017-09-20 19:38:08 +02:00

183 lines
5.6 KiB
C

/*
* Copyright 2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#ifdef __SUBSURFACE__
# ifndef __KERNEL_CUDA__
ccl_device
# else
ccl_device_inline
# endif
bool kernel_path_subsurface_scatter(
KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
ccl_addr_space PathState *state,
ccl_addr_space Ray *ray,
ccl_addr_space float3 *throughput,
ccl_addr_space SubsurfaceIndirectRays *ss_indirect)
{
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
const ShaderClosure *sc = shader_bssrdf_pick(sd, throughput, &bssrdf_u);
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
/* We should never have two consecutive BSSRDF bounces,
* the second one should be converted to a diffuse BSDF to
* avoid this.
*/
kernel_assert(!ss_indirect->tracing);
uint lcg_state = lcg_state_init_addrspace(state, 0x68bc21eb);
SubsurfaceIntersection ss_isect;
int num_hits = subsurface_scatter_multi_intersect(kg,
&ss_isect,
sd,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
false);
# ifdef __VOLUME__
ss_indirect->need_update_volume_stack =
kernel_data.integrator.use_volumes &&
sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
# endif /* __VOLUME__ */
/* compute lighting with the BSDF closure */
for(int hit = 0; hit < num_hits; hit++) {
/* NOTE: We reuse the existing ShaderData, we assume the path
* integration loop stops when this function returns true.
*/
subsurface_scatter_multi_setup(kg,
&ss_isect,
hit,
sd,
state,
state->flag,
sc,
false);
ccl_addr_space PathState *hit_state = &ss_indirect->state[ss_indirect->num_rays];
ccl_addr_space Ray *hit_ray = &ss_indirect->rays[ss_indirect->num_rays];
ccl_addr_space float3 *hit_tp = &ss_indirect->throughputs[ss_indirect->num_rays];
PathRadiance *hit_L = &ss_indirect->L[ss_indirect->num_rays];
*hit_state = *state;
*hit_ray = *ray;
*hit_tp = *throughput;
hit_state->rng_offset += PRNG_BOUNCE_NUM;
path_radiance_init(hit_L, kernel_data.film.use_light_pass);
hit_L->direct_throughput = L->direct_throughput;
path_radiance_copy_indirect(hit_L, L);
kernel_path_surface_connect_light(kg, sd, emission_sd, *hit_tp, state, hit_L);
if(kernel_path_surface_bounce(kg,
sd,
hit_tp,
hit_state,
hit_L,
hit_ray))
{
# ifdef __LAMP_MIS__
hit_state->ray_t = 0.0f;
# endif /* __LAMP_MIS__ */
# ifdef __VOLUME__
if(ss_indirect->need_update_volume_stack) {
Ray volume_ray = *ray;
/* Setup ray from previous surface point to the new one. */
volume_ray.D = normalize_len(hit_ray->P - volume_ray.P,
&volume_ray.t);
kernel_volume_stack_update_for_subsurface(
kg,
emission_sd,
&volume_ray,
hit_state->volume_stack);
}
# endif /* __VOLUME__ */
path_radiance_reset_indirect(L);
ss_indirect->num_rays++;
}
else {
path_radiance_accum_sample(L, hit_L);
}
}
return true;
}
return false;
}
ccl_device_inline void kernel_path_subsurface_init_indirect(
ccl_addr_space SubsurfaceIndirectRays *ss_indirect)
{
ss_indirect->tracing = false;
ss_indirect->num_rays = 0;
}
ccl_device void kernel_path_subsurface_accum_indirect(
ccl_addr_space SubsurfaceIndirectRays *ss_indirect,
PathRadiance *L)
{
if(ss_indirect->tracing) {
path_radiance_sum_indirect(L);
path_radiance_accum_sample(&ss_indirect->direct_L, L);
if(ss_indirect->num_rays == 0) {
*L = ss_indirect->direct_L;
}
}
}
ccl_device void kernel_path_subsurface_setup_indirect(
KernelGlobals *kg,
ccl_addr_space SubsurfaceIndirectRays *ss_indirect,
ccl_addr_space PathState *state,
ccl_addr_space Ray *ray,
PathRadiance *L,
ccl_addr_space float3 *throughput)
{
if(!ss_indirect->tracing) {
ss_indirect->direct_L = *L;
}
ss_indirect->tracing = true;
/* Setup state, ray and throughput for indirect SSS rays. */
ss_indirect->num_rays--;
ccl_addr_space Ray *indirect_ray = &ss_indirect->rays[ss_indirect->num_rays];
PathRadiance *indirect_L = &ss_indirect->L[ss_indirect->num_rays];
*state = ss_indirect->state[ss_indirect->num_rays];
*ray = *indirect_ray;
*L = *indirect_L;
*throughput = ss_indirect->throughputs[ss_indirect->num_rays];
state->rng_offset += ss_indirect->num_rays * PRNG_BOUNCE_NUM;
}
#endif /* __SUBSURFACE__ */
CCL_NAMESPACE_END