blender/source/gameengine/Converter/BL_BlenderDataConversion.cpp
2016-06-19 06:33:29 +10:00

2468 lines
78 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* Convert blender data to ketsji
*/
/** \file gameengine/Converter/BL_BlenderDataConversion.cpp
* \ingroup bgeconv
*/
#ifdef _MSC_VER
# pragma warning (disable:4786)
#endif
/* Since threaded object update we've disabled in-place
* curve evaluation (in cases when applying curve modifier
* with target curve non-evaluated yet).
*
* This requires game engine to take care of DAG and object
* evaluation (currently it's designed to export only objects
* it able to render).
*
* This workaround will make sure that curve_cache for curves
* is up-to-date.
*/
#define THREADED_DAG_WORKAROUND
#include <math.h>
#include <vector>
#include <algorithm>
#include "BL_BlenderDataConversion.h"
#include "MT_Transform.h"
#include "MT_MinMax.h"
#include "PHY_Pro.h"
#include "PHY_IPhysicsEnvironment.h"
#include "RAS_MeshObject.h"
#include "RAS_IRasterizer.h"
#include "RAS_ILightObject.h"
#include "KX_ConvertActuators.h"
#include "KX_ConvertControllers.h"
#include "KX_ConvertSensors.h"
#include "SCA_LogicManager.h"
#include "SCA_TimeEventManager.h"
#include "KX_ClientObjectInfo.h"
#include "KX_Scene.h"
#include "KX_GameObject.h"
#include "KX_Light.h"
#include "KX_Camera.h"
#include "KX_EmptyObject.h"
#include "KX_FontObject.h"
#include "RAS_TexMatrix.h"
#include "RAS_ICanvas.h"
#include "RAS_Polygon.h"
#include "RAS_TexVert.h"
#include "RAS_BucketManager.h"
#include "RAS_IPolygonMaterial.h"
#include "BL_Material.h"
#include "KX_BlenderMaterial.h"
#include "BL_Texture.h"
#include "BKE_main.h"
#include "BKE_global.h"
#include "BKE_object.h"
#include "BL_ModifierDeformer.h"
#include "BL_ShapeDeformer.h"
#include "BL_SkinDeformer.h"
#include "BL_MeshDeformer.h"
#include "KX_SoftBodyDeformer.h"
#include "BLI_utildefines.h"
#include "BLI_listbase.h"
#include "KX_WorldInfo.h"
#include "KX_KetsjiEngine.h"
#include "KX_BlenderSceneConverter.h"
/* This little block needed for linking to Blender... */
#ifdef WIN32
#include "BLI_winstuff.h"
#endif
/* This list includes only data type definitions */
#include "DNA_object_types.h"
#include "DNA_material_types.h"
#include "DNA_texture_types.h"
#include "DNA_image_types.h"
#include "DNA_lamp_types.h"
#include "DNA_group_types.h"
#include "DNA_scene_types.h"
#include "DNA_camera_types.h"
#include "DNA_property_types.h"
#include "DNA_text_types.h"
#include "DNA_sensor_types.h"
#include "DNA_controller_types.h"
#include "DNA_actuator_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_view3d_types.h"
#include "DNA_world_types.h"
#include "DNA_sound_types.h"
#include "DNA_key_types.h"
#include "DNA_armature_types.h"
#include "DNA_action_types.h"
#include "DNA_object_force.h"
#include "DNA_constraint_types.h"
#include "MEM_guardedalloc.h"
#include "BKE_key.h"
#include "BKE_mesh.h"
#include "BLI_math.h"
extern "C" {
#include "BKE_scene.h"
#include "BKE_customdata.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_DerivedMesh.h"
#include "BKE_material.h" /* give_current_material */
#include "BKE_image.h"
#include "IMB_imbuf_types.h"
#include "BKE_displist.h"
extern Material defmaterial; /* material.c */
}
/* end of blender include block */
#include "KX_BlenderInputDevice.h"
#include "KX_ConvertProperties.h"
#include "SG_Node.h"
#include "SG_BBox.h"
#include "SG_Tree.h"
#include "KX_SG_NodeRelationships.h"
#include "KX_SG_BoneParentNodeRelationship.h"
#ifdef WITH_BULLET
#include "CcdPhysicsEnvironment.h"
#include "CcdGraphicController.h"
#endif
#include "KX_MotionState.h"
#include "BL_ArmatureObject.h"
#include "BL_DeformableGameObject.h"
#include "KX_NavMeshObject.h"
#include "KX_ObstacleSimulation.h"
#include "BLI_threads.h"
static bool default_light_mode = 0;
static std::map<int, SCA_IInputDevice::KX_EnumInputs> create_translate_table()
{
std::map<int, SCA_IInputDevice::KX_EnumInputs> m;
/* The reverse table. In order to not confuse ourselves, we */
/* immediately convert all events that come in to KX codes. */
m[LEFTMOUSE ] = SCA_IInputDevice::KX_LEFTMOUSE;
m[MIDDLEMOUSE ] = SCA_IInputDevice::KX_MIDDLEMOUSE;
m[RIGHTMOUSE ] = SCA_IInputDevice::KX_RIGHTMOUSE;
m[WHEELUPMOUSE ] = SCA_IInputDevice::KX_WHEELUPMOUSE;
m[WHEELDOWNMOUSE ] = SCA_IInputDevice::KX_WHEELDOWNMOUSE;
m[MOUSEX ] = SCA_IInputDevice::KX_MOUSEX;
m[MOUSEY ] = SCA_IInputDevice::KX_MOUSEY;
// TIMERS
m[TIMER0 ] = SCA_IInputDevice::KX_TIMER0;
m[TIMER1 ] = SCA_IInputDevice::KX_TIMER1;
m[TIMER2 ] = SCA_IInputDevice::KX_TIMER2;
// SYSTEM
#if 0
/* **** XXX **** */
m[KEYBD ] = SCA_IInputDevice::KX_KEYBD;
m[RAWKEYBD ] = SCA_IInputDevice::KX_RAWKEYBD;
m[REDRAW ] = SCA_IInputDevice::KX_REDRAW;
m[INPUTCHANGE ] = SCA_IInputDevice::KX_INPUTCHANGE;
m[QFULL ] = SCA_IInputDevice::KX_QFULL;
m[WINFREEZE ] = SCA_IInputDevice::KX_WINFREEZE;
m[WINTHAW ] = SCA_IInputDevice::KX_WINTHAW;
m[WINCLOSE ] = SCA_IInputDevice::KX_WINCLOSE;
m[WINQUIT ] = SCA_IInputDevice::KX_WINQUIT;
m[Q_FIRSTTIME ] = SCA_IInputDevice::KX_Q_FIRSTTIME;
/* **** XXX **** */
#endif
// standard keyboard
m[AKEY ] = SCA_IInputDevice::KX_AKEY;
m[BKEY ] = SCA_IInputDevice::KX_BKEY;
m[CKEY ] = SCA_IInputDevice::KX_CKEY;
m[DKEY ] = SCA_IInputDevice::KX_DKEY;
m[EKEY ] = SCA_IInputDevice::KX_EKEY;
m[FKEY ] = SCA_IInputDevice::KX_FKEY;
m[GKEY ] = SCA_IInputDevice::KX_GKEY;
m[HKEY ] = SCA_IInputDevice::KX_HKEY;
m[IKEY ] = SCA_IInputDevice::KX_IKEY;
m[JKEY ] = SCA_IInputDevice::KX_JKEY;
m[KKEY ] = SCA_IInputDevice::KX_KKEY;
m[LKEY ] = SCA_IInputDevice::KX_LKEY;
m[MKEY ] = SCA_IInputDevice::KX_MKEY;
m[NKEY ] = SCA_IInputDevice::KX_NKEY;
m[OKEY ] = SCA_IInputDevice::KX_OKEY;
m[PKEY ] = SCA_IInputDevice::KX_PKEY;
m[QKEY ] = SCA_IInputDevice::KX_QKEY;
m[RKEY ] = SCA_IInputDevice::KX_RKEY;
m[SKEY ] = SCA_IInputDevice::KX_SKEY;
m[TKEY ] = SCA_IInputDevice::KX_TKEY;
m[UKEY ] = SCA_IInputDevice::KX_UKEY;
m[VKEY ] = SCA_IInputDevice::KX_VKEY;
m[WKEY ] = SCA_IInputDevice::KX_WKEY;
m[XKEY ] = SCA_IInputDevice::KX_XKEY;
m[YKEY ] = SCA_IInputDevice::KX_YKEY;
m[ZKEY ] = SCA_IInputDevice::KX_ZKEY;
m[ZEROKEY ] = SCA_IInputDevice::KX_ZEROKEY;
m[ONEKEY ] = SCA_IInputDevice::KX_ONEKEY;
m[TWOKEY ] = SCA_IInputDevice::KX_TWOKEY;
m[THREEKEY ] = SCA_IInputDevice::KX_THREEKEY;
m[FOURKEY ] = SCA_IInputDevice::KX_FOURKEY;
m[FIVEKEY ] = SCA_IInputDevice::KX_FIVEKEY;
m[SIXKEY ] = SCA_IInputDevice::KX_SIXKEY;
m[SEVENKEY ] = SCA_IInputDevice::KX_SEVENKEY;
m[EIGHTKEY ] = SCA_IInputDevice::KX_EIGHTKEY;
m[NINEKEY ] = SCA_IInputDevice::KX_NINEKEY;
m[CAPSLOCKKEY ] = SCA_IInputDevice::KX_CAPSLOCKKEY;
m[LEFTCTRLKEY ] = SCA_IInputDevice::KX_LEFTCTRLKEY;
m[LEFTALTKEY ] = SCA_IInputDevice::KX_LEFTALTKEY;
m[RIGHTALTKEY ] = SCA_IInputDevice::KX_RIGHTALTKEY;
m[RIGHTCTRLKEY ] = SCA_IInputDevice::KX_RIGHTCTRLKEY;
m[RIGHTSHIFTKEY ] = SCA_IInputDevice::KX_RIGHTSHIFTKEY;
m[LEFTSHIFTKEY ] = SCA_IInputDevice::KX_LEFTSHIFTKEY;
m[ESCKEY ] = SCA_IInputDevice::KX_ESCKEY;
m[TABKEY ] = SCA_IInputDevice::KX_TABKEY;
m[RETKEY ] = SCA_IInputDevice::KX_RETKEY;
m[SPACEKEY ] = SCA_IInputDevice::KX_SPACEKEY;
m[LINEFEEDKEY ] = SCA_IInputDevice::KX_LINEFEEDKEY;
m[BACKSPACEKEY ] = SCA_IInputDevice::KX_BACKSPACEKEY;
m[DELKEY ] = SCA_IInputDevice::KX_DELKEY;
m[SEMICOLONKEY ] = SCA_IInputDevice::KX_SEMICOLONKEY;
m[PERIODKEY ] = SCA_IInputDevice::KX_PERIODKEY;
m[COMMAKEY ] = SCA_IInputDevice::KX_COMMAKEY;
m[QUOTEKEY ] = SCA_IInputDevice::KX_QUOTEKEY;
m[ACCENTGRAVEKEY ] = SCA_IInputDevice::KX_ACCENTGRAVEKEY;
m[MINUSKEY ] = SCA_IInputDevice::KX_MINUSKEY;
m[PLUSKEY ] = SCA_IInputDevice::KX_PLUSKEY;
m[SLASHKEY ] = SCA_IInputDevice::KX_SLASHKEY;
m[BACKSLASHKEY ] = SCA_IInputDevice::KX_BACKSLASHKEY;
m[EQUALKEY ] = SCA_IInputDevice::KX_EQUALKEY;
m[LEFTBRACKETKEY ] = SCA_IInputDevice::KX_LEFTBRACKETKEY;
m[RIGHTBRACKETKEY ] = SCA_IInputDevice::KX_RIGHTBRACKETKEY;
m[LEFTARROWKEY ] = SCA_IInputDevice::KX_LEFTARROWKEY;
m[DOWNARROWKEY ] = SCA_IInputDevice::KX_DOWNARROWKEY;
m[RIGHTARROWKEY ] = SCA_IInputDevice::KX_RIGHTARROWKEY;
m[UPARROWKEY ] = SCA_IInputDevice::KX_UPARROWKEY;
m[PAD2 ] = SCA_IInputDevice::KX_PAD2;
m[PAD4 ] = SCA_IInputDevice::KX_PAD4;
m[PAD6 ] = SCA_IInputDevice::KX_PAD6;
m[PAD8 ] = SCA_IInputDevice::KX_PAD8;
m[PAD1 ] = SCA_IInputDevice::KX_PAD1;
m[PAD3 ] = SCA_IInputDevice::KX_PAD3;
m[PAD5 ] = SCA_IInputDevice::KX_PAD5;
m[PAD7 ] = SCA_IInputDevice::KX_PAD7;
m[PAD9 ] = SCA_IInputDevice::KX_PAD9;
m[PADPERIOD ] = SCA_IInputDevice::KX_PADPERIOD;
m[PADSLASHKEY ] = SCA_IInputDevice::KX_PADSLASHKEY;
m[PADASTERKEY ] = SCA_IInputDevice::KX_PADASTERKEY;
m[PAD0 ] = SCA_IInputDevice::KX_PAD0;
m[PADMINUS ] = SCA_IInputDevice::KX_PADMINUS;
m[PADENTER ] = SCA_IInputDevice::KX_PADENTER;
m[PADPLUSKEY ] = SCA_IInputDevice::KX_PADPLUSKEY;
m[F1KEY ] = SCA_IInputDevice::KX_F1KEY;
m[F2KEY ] = SCA_IInputDevice::KX_F2KEY;
m[F3KEY ] = SCA_IInputDevice::KX_F3KEY;
m[F4KEY ] = SCA_IInputDevice::KX_F4KEY;
m[F5KEY ] = SCA_IInputDevice::KX_F5KEY;
m[F6KEY ] = SCA_IInputDevice::KX_F6KEY;
m[F7KEY ] = SCA_IInputDevice::KX_F7KEY;
m[F8KEY ] = SCA_IInputDevice::KX_F8KEY;
m[F9KEY ] = SCA_IInputDevice::KX_F9KEY;
m[F10KEY ] = SCA_IInputDevice::KX_F10KEY;
m[F11KEY ] = SCA_IInputDevice::KX_F11KEY;
m[F12KEY ] = SCA_IInputDevice::KX_F12KEY;
m[F13KEY ] = SCA_IInputDevice::KX_F13KEY;
m[F14KEY ] = SCA_IInputDevice::KX_F14KEY;
m[F15KEY ] = SCA_IInputDevice::KX_F15KEY;
m[F16KEY ] = SCA_IInputDevice::KX_F16KEY;
m[F17KEY ] = SCA_IInputDevice::KX_F17KEY;
m[F18KEY ] = SCA_IInputDevice::KX_F18KEY;
m[F19KEY ] = SCA_IInputDevice::KX_F19KEY;
m[OSKEY ] = SCA_IInputDevice::KX_OSKEY;
m[PAUSEKEY ] = SCA_IInputDevice::KX_PAUSEKEY;
m[INSERTKEY ] = SCA_IInputDevice::KX_INSERTKEY;
m[HOMEKEY ] = SCA_IInputDevice::KX_HOMEKEY;
m[PAGEUPKEY ] = SCA_IInputDevice::KX_PAGEUPKEY;
m[PAGEDOWNKEY ] = SCA_IInputDevice::KX_PAGEDOWNKEY;
m[ENDKEY ] = SCA_IInputDevice::KX_ENDKEY;
return m;
}
static std::map<int, SCA_IInputDevice::KX_EnumInputs> gReverseKeyTranslateTable = create_translate_table();
SCA_IInputDevice::KX_EnumInputs ConvertKeyCode(int key_code)
{
return gReverseKeyTranslateTable[key_code];
}
static unsigned int KX_rgbaint2uint_new(unsigned int icol)
{
union
{
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.integer = icol;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
/* Now the real converting starts... */
static unsigned int KX_Mcol2uint_new(MCol col)
{
/* color has to be converted without endian sensitivity. So no shifting! */
union
{
MCol col;
unsigned int integer;
unsigned char cp[4];
} out_color, in_color;
in_color.col = col;
out_color.cp[0] = in_color.cp[3]; // red
out_color.cp[1] = in_color.cp[2]; // green
out_color.cp[2] = in_color.cp[1]; // blue
out_color.cp[3] = in_color.cp[0]; // alpha
return out_color.integer;
}
static void SetDefaultLightMode(Scene* scene)
{
default_light_mode = false;
Scene *sce_iter;
Base *base;
for (SETLOOPER(scene, sce_iter, base))
{
if (base->object->type == OB_LAMP)
{
default_light_mode = true;
return;
}
}
}
static bool GetMaterialUseVColor(Material *ma, const bool glslmat)
{
if (ma) {
/* glsl uses vertex colors, otherwise use material setting
* defmaterial doesn't have VERTEXCOLP as default [#34505] */
return (glslmat || ma == &defmaterial || (ma->mode & MA_VERTEXCOLP) != 0);
}
else {
/* no material, use vertex colors */
return true;
}
}
// --
static void GetRGB(
const bool use_vcol,
MFace* mface,
MCol* mmcol,
Material *mat,
unsigned int c[4])
{
unsigned int color = 0xFFFFFFFFL;
if (use_vcol == true) {
if (mmcol) {
c[0] = KX_Mcol2uint_new(mmcol[0]);
c[1] = KX_Mcol2uint_new(mmcol[1]);
c[2] = KX_Mcol2uint_new(mmcol[2]);
if (mface->v4)
c[3] = KX_Mcol2uint_new(mmcol[3]);
}
else { // backup white
c[0] = KX_rgbaint2uint_new(color);
c[1] = KX_rgbaint2uint_new(color);
c[2] = KX_rgbaint2uint_new(color);
if (mface->v4)
c[3] = KX_rgbaint2uint_new( color );
}
}
else {
/* material rgba */
if (mat) {
union {
unsigned char cp[4];
unsigned int integer;
} col_converter;
col_converter.cp[3] = (unsigned char) (mat->r * 255.0f);
col_converter.cp[2] = (unsigned char) (mat->g * 255.0f);
col_converter.cp[1] = (unsigned char) (mat->b * 255.0f);
col_converter.cp[0] = (unsigned char) (mat->alpha * 255.0f);
color = col_converter.integer;
}
c[0] = KX_rgbaint2uint_new(color);
c[1] = KX_rgbaint2uint_new(color);
c[2] = KX_rgbaint2uint_new(color);
if (mface->v4) {
c[3] = KX_rgbaint2uint_new(color);
}
}
#if 0 /* white, unused */
{
c[0] = KX_rgbaint2uint_new(color);
c[1] = KX_rgbaint2uint_new(color);
c[2] = KX_rgbaint2uint_new(color);
if (mface->v4)
c[3] = KX_rgbaint2uint_new(color);
}
#endif
}
typedef struct MTF_localLayer {
MTFace *face;
const char *name;
} MTF_localLayer;
static void GetUVs(BL_Material *material, MTF_localLayer *layers, MFace *mface, MTFace *tface, MT_Point2 uvs[4][MAXTEX])
{
int unit = 0;
if (tface)
{
uvs[0][0].setValue(tface->uv[0]);
uvs[1][0].setValue(tface->uv[1]);
uvs[2][0].setValue(tface->uv[2]);
if (mface->v4)
uvs[3][0].setValue(tface->uv[3]);
}
else
{
uvs[0][0] = uvs[1][0] = uvs[2][0] = uvs[3][0] = MT_Point2(0.f, 0.f);
}
vector<STR_String> found_layers;
for (int vind = 0; vind<MAXTEX; vind++)
{
BL_Mapping &map = material->mapping[vind];
if (!(map.mapping & USEUV)) continue;
if (std::find(found_layers.begin(), found_layers.end(), map.uvCoName) != found_layers.end())
continue;
//If no UVSet is specified, try grabbing one from the UV/Image editor
if (map.uvCoName.IsEmpty() && tface)
{
uvs[0][unit].setValue(tface->uv[0]);
uvs[1][unit].setValue(tface->uv[1]);
uvs[2][unit].setValue(tface->uv[2]);
if (mface->v4)
uvs[3][unit].setValue(tface->uv[3]);
++unit;
continue;
}
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer& layer = layers[lay];
if (layer.face == 0) break;
if (map.uvCoName.IsEmpty() || strcmp(map.uvCoName.ReadPtr(), layer.name)==0)
{
uvs[0][unit].setValue(layer.face->uv[0]);
uvs[1][unit].setValue(layer.face->uv[1]);
uvs[2][unit].setValue(layer.face->uv[2]);
if (mface->v4)
uvs[3][unit].setValue(layer.face->uv[3]);
else
uvs[3][unit].setValue(0.0f, 0.0f);
++unit;
found_layers.push_back(map.uvCoName);
break;
}
}
}
}
// ------------------------------------
static bool ConvertMaterial(
BL_Material *material,
Material *mat,
MTFace *tface,
const char *tfaceName,
MFace *mface,
MCol *mmcol,
bool glslmat)
{
material->Initialize();
int texalpha = 0;
const bool validmat = (mat != NULL);
const bool validface = (tface != NULL);
const bool use_vcol = GetMaterialUseVColor(mat, glslmat);
material->IdMode = DEFAULT_BLENDER;
material->glslmat = (validmat) ? glslmat: false;
material->materialindex = mface->mat_nr;
// --------------------------------
if (validmat) {
// use lighting?
material->ras_mode |= (mat->mode & MA_SHLESS) ? 0 : USE_LIGHT;
material->ras_mode |= (mat->game.flag & GEMAT_BACKCULL) ? 0 : TWOSIDED;
// cast shadows?
material->ras_mode |= ((mat->mode2 & MA_CASTSHADOW) && (mat->mode & MA_SHADBUF)) ? CAST_SHADOW : 0;
// only shadows?
material->ras_mode |= (mat->mode & MA_ONLYCAST) ? ONLY_SHADOW : 0;
MTex *mttmp = NULL;
int valid_index = 0;
/* In Multitexture use the face texture if and only if
* it is set in the buttons
* In GLSL is not working yet :/ 3.2011 */
bool facetex = false;
if (validface && mat->mode & MA_FACETEXTURE) {
facetex = true;
}
// foreach MTex
for (int i = 0; i < MAXTEX; i++) {
// use face tex
if (i == 0 && facetex ) {
facetex = false;
Image *tmp = (Image *)(tface->tpage);
if (tmp) {
material->img[i] = tmp;
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= MIPMAP;
material->flag[i] |= (mat->game.alpha_blend & GEMAT_ALPHA_SORT) ? USEALPHA : 0;
material->flag[i] |= (mat->game.alpha_blend & GEMAT_ALPHA) ? USEALPHA : 0;
material->flag[i] |= (mat->game.alpha_blend & GEMAT_ADD) ? CALCALPHA : 0;
if (material->img[i]->flag & IMA_REFLECT) {
material->mapping[i].mapping |= USEREFL;
}
else {
mttmp = getMTexFromMaterial(mat, i);
if (mttmp && (mttmp->texco & TEXCO_UV)) {
/* string may be "" but thats detected as empty after */
material->mapping[i].uvCoName = mttmp->uvname;
}
material->mapping[i].mapping |= USEUV;
}
valid_index++;
}
else {
material->img[i] = 0;
material->texname[i] = "";
}
continue;
}
mttmp = getMTexFromMaterial(mat, i);
if (mttmp) {
if (mttmp->tex) {
if (mttmp->tex->type == TEX_IMAGE) {
material->mtexname[i] = mttmp->tex->id.name;
material->img[i] = mttmp->tex->ima;
if (material->img[i]) {
material->texname[i] = material->img[i]->id.name;
material->flag[i] |= (mttmp->tex->imaflag &TEX_MIPMAP) ? MIPMAP : 0;
if (material->img[i] && (material->img[i]->flag & IMA_IGNORE_ALPHA) == 0) {
material->flag[i] |= USEALPHA;
}
if (mttmp->tex->imaflag & TEX_CALCALPHA) {
material->flag[i] |= CALCALPHA;
}
else if (mttmp->tex->flag & TEX_NEGALPHA) {
material->flag[i] |= USENEGALPHA;
}
material->color_blend[i] = mttmp->colfac;
material->flag[i] |= (mttmp->mapto & MAP_ALPHA) ? TEXALPHA : 0;
material->flag[i] |= (mttmp->texflag & MTEX_NEGATIVE) ? TEXNEG : 0;
if (!glslmat && (material->flag[i] & TEXALPHA)) {
texalpha = 1;
}
}
}
else if (mttmp->tex->type == TEX_ENVMAP) {
if (mttmp->tex->env->stype == ENV_LOAD) {
material->mtexname[i] = mttmp->tex->id.name;
EnvMap *env = mttmp->tex->env;
env->ima = mttmp->tex->ima;
material->cubemap[i] = env;
if (material->cubemap[i]) {
if (!material->cubemap[i]->cube[0]) {
BL_Texture::SplitEnvMap(material->cubemap[i]);
}
material->texname[i] = material->cubemap[i]->ima->id.name;
material->mapping[i].mapping |= USEENV;
}
}
}
#if 0 /* this flag isn't used anymore */
material->flag[i] |= (BKE_animdata_from_id(mat->id) != NULL) ? HASIPO : 0;
#endif
/// --------------------------------
// mapping methods
if (mat->septex & (1 << i)) {
// If this texture slot isn't in use, set it to disabled to prevent multi-uv problems
material->mapping[i].mapping = DISABLE;
}
else {
material->mapping[i].mapping |= (mttmp->texco & TEXCO_REFL) ? USEREFL : 0;
if (mttmp->texco & TEXCO_OBJECT) {
material->mapping[i].mapping |= USEOBJ;
if (mttmp->object) {
material->mapping[i].objconame = mttmp->object->id.name;
}
}
else if (mttmp->texco & TEXCO_REFL) {
material->mapping[i].mapping |= USEREFL;
}
else if (mttmp->texco & (TEXCO_ORCO | TEXCO_GLOB)) {
material->mapping[i].mapping |= USEORCO;
}
else if (mttmp->texco & TEXCO_UV) {
/* string may be "" but thats detected as empty after */
material->mapping[i].uvCoName = mttmp->uvname;
material->mapping[i].mapping |= USEUV;
}
else if (mttmp->texco & TEXCO_NORM) {
material->mapping[i].mapping |= USENORM;
}
else if (mttmp->texco & TEXCO_TANGENT) {
material->mapping[i].mapping |= USETANG;
}
else {
material->mapping[i].mapping |= DISABLE;
}
material->mapping[i].scale[0] = mttmp->size[0];
material->mapping[i].scale[1] = mttmp->size[1];
material->mapping[i].scale[2] = mttmp->size[2];
material->mapping[i].offsets[0] = mttmp->ofs[0];
material->mapping[i].offsets[1] = mttmp->ofs[1];
material->mapping[i].offsets[2] = mttmp->ofs[2];
material->mapping[i].projplane[0] = mttmp->projx;
material->mapping[i].projplane[1] = mttmp->projy;
material->mapping[i].projplane[2] = mttmp->projz;
}
/// --------------------------------
switch (mttmp->blendtype) {
case MTEX_BLEND:
material->blend_mode[i] = BLEND_MIX;
break;
case MTEX_MUL:
material->blend_mode[i] = BLEND_MUL;
break;
case MTEX_ADD:
material->blend_mode[i] = BLEND_ADD;
break;
case MTEX_SUB:
material->blend_mode[i] = BLEND_SUB;
break;
case MTEX_SCREEN:
material->blend_mode[i] = BLEND_SCR;
break;
}
valid_index++;
}
}
}
// above one tex the switches here
// are not used
switch (valid_index) {
case 0:
material->IdMode = DEFAULT_BLENDER;
break;
case 1:
material->IdMode = ONETEX;
break;
default:
material->IdMode = GREATERTHAN2;
break;
}
material->SetUsers(mat->id.us);
material->num_enabled = valid_index;
material->speccolor[0] = mat->specr;
material->speccolor[1] = mat->specg;
material->speccolor[2] = mat->specb;
material->hard = (float)mat->har / 4.0f;
material->matcolor[0] = mat->r;
material->matcolor[1] = mat->g;
material->matcolor[2] = mat->b;
material->matcolor[3] = mat->alpha;
material->alpha = mat->alpha;
material->emit = mat->emit;
material->spec_f = mat->spec;
material->ref = mat->ref;
material->amb = mat->amb;
material->ras_mode |= (mat->material_type == MA_TYPE_WIRE) ? WIRE : 0;
}
else { // No Material
int valid = 0;
// check for tface tex to fallback on
if (validface) {
material->img[0] = (Image *)(tface->tpage);
// ------------------------
if (material->img[0]) {
material->texname[0] = material->img[0]->id.name;
material->mapping[0].mapping |= ((material->img[0]->flag & IMA_REFLECT) != 0) ? USEREFL : 0;
/* see if depth of the image is 32bits */
if (BKE_image_has_alpha(material->img[0])) {
material->flag[0] |= USEALPHA;
material->alphablend = GEMAT_ALPHA;
}
else {
material->alphablend = GEMAT_SOLID;
}
valid++;
}
}
else {
material->alphablend = GEMAT_SOLID;
}
material->SetUsers(-1);
material->num_enabled = valid;
material->IdMode = TEXFACE;
material->speccolor[0] = 1.0f;
material->speccolor[1] = 1.0f;
material->speccolor[2] = 1.0f;
material->hard = 35.0f;
material->matcolor[0] = 0.5f;
material->matcolor[1] = 0.5f;
material->matcolor[2] = 0.5f;
material->spec_f = 0.5f;
material->ref = 0.8f;
// No material - old default TexFace properties
material->ras_mode |= USE_LIGHT;
}
/* No material, what to do? let's see what is in the UV and set the material accordingly
* light and visible is always on */
if (validface) {
material->tile = tface->tile;
}
else {
// nothing at all
material->alphablend = GEMAT_SOLID;
material->tile = 0;
}
if (validmat && validface) {
material->alphablend = mat->game.alpha_blend;
}
// with ztransp enabled, enforce alpha blending mode
if (validmat && (mat->mode & MA_TRANSP) && (mat->mode & MA_ZTRANSP) && (material->alphablend == GEMAT_SOLID)) {
material->alphablend = GEMAT_ALPHA;
}
// always zsort alpha + add
if ((ELEM(material->alphablend, GEMAT_ALPHA, GEMAT_ALPHA_SORT, GEMAT_ADD) || texalpha) && (material->alphablend != GEMAT_CLIP)) {
material->ras_mode |= ALPHA;
material->ras_mode |= (mat && (mat->game.alpha_blend & GEMAT_ALPHA_SORT)) ? ZSORT : 0;
}
// XXX The RGB values here were meant to be temporary storage for the conversion process,
// but fonts now make use of them too, so we leave them in for now.
unsigned int rgb[4];
GetRGB(use_vcol, mface, mmcol, mat, rgb);
// swap the material color, so MCol on bitmap font works
if (validmat && (use_vcol == false) && (mat->game.flag & GEMAT_TEXT)) {
material->rgb[0] = KX_rgbaint2uint_new(rgb[0]);
material->rgb[1] = KX_rgbaint2uint_new(rgb[1]);
material->rgb[2] = KX_rgbaint2uint_new(rgb[2]);
material->rgb[3] = KX_rgbaint2uint_new(rgb[3]);
}
if (validmat) {
material->matname =(mat->id.name);
}
if (tface) {
ME_MTEXFACE_CPY(&material->mtexpoly, tface);
}
else {
memset(&material->mtexpoly, 0, sizeof(material->mtexpoly));
}
material->material = mat;
return true;
}
static RAS_MaterialBucket *material_from_mesh(Material *ma, MFace *mface, MTFace *tface, MCol *mcol, MTF_localLayer *layers, int lightlayer, unsigned int *rgb, MT_Point2 uvs[4][RAS_TexVert::MAX_UNIT], const char *tfaceName, KX_Scene* scene, KX_BlenderSceneConverter *converter)
{
RAS_IPolyMaterial* polymat = converter->FindCachedPolyMaterial(scene, ma);
BL_Material* bl_mat = converter->FindCachedBlenderMaterial(scene, ma);
KX_BlenderMaterial* kx_blmat = NULL;
/* first is the BL_Material */
if (!bl_mat)
{
bl_mat = new BL_Material();
ConvertMaterial(bl_mat, ma, tface, tfaceName, mface, mcol,
converter->GetGLSLMaterials());
if (ma && (ma->mode & MA_FACETEXTURE) == 0)
converter->CacheBlenderMaterial(scene, ma, bl_mat);
}
const bool use_vcol = GetMaterialUseVColor(ma, bl_mat->glslmat);
GetRGB(use_vcol, mface, mcol, ma, rgb);
GetUVs(bl_mat, layers, mface, tface, uvs);
/* then the KX_BlenderMaterial */
if (polymat == NULL)
{
kx_blmat = new KX_BlenderMaterial();
kx_blmat->Initialize(scene, bl_mat, (ma?&ma->game:NULL), lightlayer);
polymat = static_cast<RAS_IPolyMaterial*>(kx_blmat);
if (ma && (ma->mode & MA_FACETEXTURE) == 0)
converter->CachePolyMaterial(scene, ma, polymat);
}
// see if a bucket was reused or a new one was created
// this way only one KX_BlenderMaterial object has to exist per bucket
bool bucketCreated;
RAS_MaterialBucket* bucket = scene->FindBucket(polymat, bucketCreated);
// this is needed to free up memory afterwards.
// the converter will also prevent duplicates from being registered,
// so just register everything.
converter->RegisterPolyMaterial(polymat);
converter->RegisterBlenderMaterial(bl_mat);
return bucket;
}
/* blenderobj can be NULL, make sure its checked for */
RAS_MeshObject* BL_ConvertMesh(Mesh* mesh, Object* blenderobj, KX_Scene* scene, KX_BlenderSceneConverter *converter, bool libloading)
{
RAS_MeshObject *meshobj;
int lightlayer = blenderobj ? blenderobj->lay:(1<<20)-1; // all layers if no object.
// Without checking names, we get some reuse we don't want that can cause
// problems with material LoDs.
if (blenderobj && ((meshobj = converter->FindGameMesh(mesh/*, ob->lay*/)) != NULL)) {
const char *bge_name = meshobj->GetName().ReadPtr();
const char *blender_name = ((ID *)blenderobj->data)->name + 2;
if (STREQ(bge_name, blender_name)) {
return meshobj;
}
}
// Get DerivedMesh data
DerivedMesh *dm = CDDM_from_mesh(mesh);
DM_ensure_tessface(dm);
MVert *mvert = dm->getVertArray(dm);
int totvert = dm->getNumVerts(dm);
MFace *mface = dm->getTessFaceArray(dm);
MTFace *tface = static_cast<MTFace*>(dm->getTessFaceDataArray(dm, CD_MTFACE));
MCol *mcol = static_cast<MCol*>(dm->getTessFaceDataArray(dm, CD_MCOL));
float (*tangent)[4] = NULL;
int totface = dm->getNumTessFaces(dm);
const char *tfaceName = "";
/* needs to be rewritten for loopdata */
if (tface) {
if (CustomData_get_layer_index(&dm->faceData, CD_TANGENT) == -1) {
bool generate_data = false;
if (CustomData_get_layer_index(&dm->loopData, CD_TANGENT) == -1) {
DM_calc_loop_tangents(dm, true, NULL, 0);
generate_data = true;
}
DM_generate_tangent_tessface_data(dm, generate_data);
}
tangent = (float(*)[4])dm->getTessFaceDataArray(dm, CD_TANGENT);
}
meshobj = new RAS_MeshObject(mesh);
// Extract avaiable layers
MTF_localLayer *layers = new MTF_localLayer[MAX_MTFACE];
for (int lay=0; lay<MAX_MTFACE; lay++) {
layers[lay].face = 0;
layers[lay].name = "";
}
int validLayers = 0;
for (int i=0; i<dm->faceData.totlayer; i++)
{
if (dm->faceData.layers[i].type == CD_MTFACE)
{
if (validLayers >= MAX_MTFACE) {
printf("%s: corrupted mesh %s - too many CD_MTFACE layers\n", __func__, mesh->id.name);
break;
}
layers[validLayers].face = (MTFace*)(dm->faceData.layers[i].data);
layers[validLayers].name = dm->faceData.layers[i].name;
if (tface == layers[validLayers].face)
tfaceName = layers[validLayers].name;
validLayers++;
}
}
meshobj->SetName(mesh->id.name + 2);
meshobj->m_sharedvertex_map.resize(totvert);
Material* ma = 0;
MT_Point2 uvs[4][RAS_TexVert::MAX_UNIT];
unsigned int rgb[4] = {0};
MT_Point3 pt[4];
MT_Vector3 no[4];
MT_Vector4 tan[4];
/* ugh, if there is a less annoying way to do this please use that.
* since these are converted from floats to floats, theres no real
* advantage to use MT_ types - campbell */
for (unsigned int i = 0; i < 4; i++) {
const float zero_vec[4] = {0.0f};
pt[i].setValue(zero_vec);
no[i].setValue(zero_vec);
tan[i].setValue(zero_vec);
}
/* we need to manually initialize the uvs (MoTo doesn't do that) [#34550] */
for (unsigned int i = 0; i < RAS_TexVert::MAX_UNIT; i++) {
uvs[0][i] = uvs[1][i] = uvs[2][i] = uvs[3][i] = MT_Point2(0.f, 0.f);
}
for (int f=0;f<totface;f++,mface++)
{
/* get coordinates, normals and tangents */
pt[0].setValue(mvert[mface->v1].co);
pt[1].setValue(mvert[mface->v2].co);
pt[2].setValue(mvert[mface->v3].co);
if (mface->v4) pt[3].setValue(mvert[mface->v4].co);
if (mface->flag & ME_SMOOTH) {
float n0[3], n1[3], n2[3], n3[3];
normal_short_to_float_v3(n0, mvert[mface->v1].no);
normal_short_to_float_v3(n1, mvert[mface->v2].no);
normal_short_to_float_v3(n2, mvert[mface->v3].no);
no[0] = n0;
no[1] = n1;
no[2] = n2;
if (mface->v4) {
normal_short_to_float_v3(n3, mvert[mface->v4].no);
no[3] = n3;
}
}
else {
float fno[3];
if (mface->v4)
normal_quad_v3(fno,mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co);
else
normal_tri_v3(fno,mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co);
no[0] = no[1] = no[2] = no[3] = MT_Vector3(fno);
}
if (tangent) {
tan[0] = tangent[f*4 + 0];
tan[1] = tangent[f*4 + 1];
tan[2] = tangent[f*4 + 2];
if (mface->v4)
tan[3] = tangent[f*4 + 3];
}
if (blenderobj)
ma = give_current_material(blenderobj, mface->mat_nr+1);
else
ma = mesh->mat ? mesh->mat[mface->mat_nr]:NULL;
// Check for blender material
if (ma == NULL) {
ma= &defmaterial;
}
{
RAS_MaterialBucket* bucket = material_from_mesh(ma, mface, tface, mcol, layers, lightlayer, rgb, uvs, tfaceName, scene, converter);
// set render flags
bool visible = ((ma->game.flag & GEMAT_INVISIBLE)==0);
bool twoside = ((ma->game.flag & GEMAT_BACKCULL)==0);
bool collider = ((ma->game.flag & GEMAT_NOPHYSICS)==0);
/* mark face as flat, so vertices are split */
bool flat = (mface->flag & ME_SMOOTH) == 0;
int nverts = (mface->v4)? 4: 3;
RAS_Polygon *poly = meshobj->AddPolygon(bucket, nverts);
poly->SetVisible(visible);
poly->SetCollider(collider);
poly->SetTwoside(twoside);
//poly->SetEdgeCode(mface->edcode);
meshobj->AddVertex(poly,0,pt[0],uvs[0],tan[0],rgb[0],no[0],flat,mface->v1);
meshobj->AddVertex(poly,1,pt[1],uvs[1],tan[1],rgb[1],no[1],flat,mface->v2);
meshobj->AddVertex(poly,2,pt[2],uvs[2],tan[2],rgb[2],no[2],flat,mface->v3);
if (nverts==4)
meshobj->AddVertex(poly,3,pt[3],uvs[3],tan[3],rgb[3],no[3],flat,mface->v4);
}
if (tface)
tface++;
if (mcol)
mcol+=4;
for (int lay=0; lay<MAX_MTFACE; lay++)
{
MTF_localLayer &layer = layers[lay];
if (layer.face == 0) break;
layer.face++;
}
}
// keep meshobj->m_sharedvertex_map for reinstance phys mesh.
// 2.49a and before it did: meshobj->m_sharedvertex_map.clear();
// but this didnt save much ram. - Campbell
meshobj->EndConversion();
// pre calculate texture generation
// However, we want to delay this if we're libloading so we can make sure we have the right scene.
if (!libloading) {
for (list<RAS_MeshMaterial>::iterator mit = meshobj->GetFirstMaterial();
mit != meshobj->GetLastMaterial(); ++ mit) {
mit->m_bucket->GetPolyMaterial()->OnConstruction();
}
}
if (layers)
delete []layers;
dm->release(dm);
converter->RegisterGameMesh(meshobj, mesh);
return meshobj;
}
static PHY_MaterialProps *CreateMaterialFromBlenderObject(struct Object* blenderobject)
{
PHY_MaterialProps *materialProps = new PHY_MaterialProps;
MT_assert(materialProps && "Create physics material properties failed");
Material* blendermat = give_current_material(blenderobject, 1);
if (blendermat)
{
MT_assert(0.0f <= blendermat->reflect && blendermat->reflect <= 1.0f);
materialProps->m_restitution = blendermat->reflect;
materialProps->m_friction = blendermat->friction;
materialProps->m_fh_spring = blendermat->fh;
materialProps->m_fh_damping = blendermat->xyfrict;
materialProps->m_fh_distance = blendermat->fhdist;
materialProps->m_fh_normal = (blendermat->dynamode & MA_FH_NOR) != 0;
}
else {
//give some defaults
materialProps->m_restitution = 0.f;
materialProps->m_friction = 0.5;
materialProps->m_fh_spring = 0.f;
materialProps->m_fh_damping = 0.f;
materialProps->m_fh_distance = 0.f;
materialProps->m_fh_normal = false;
}
return materialProps;
}
static PHY_ShapeProps *CreateShapePropsFromBlenderObject(struct Object* blenderobject)
{
PHY_ShapeProps *shapeProps = new PHY_ShapeProps;
MT_assert(shapeProps);
shapeProps->m_mass = blenderobject->mass;
// This needs to be fixed in blender. For now, we use:
// in Blender, inertia stands for the size value which is equivalent to
// the sphere radius
shapeProps->m_inertia = blenderobject->formfactor;
MT_assert(0.0f <= blenderobject->damping && blenderobject->damping <= 1.0f);
MT_assert(0.0f <= blenderobject->rdamping && blenderobject->rdamping <= 1.0f);
shapeProps->m_lin_drag = 1.0f - blenderobject->damping;
shapeProps->m_ang_drag = 1.0f - blenderobject->rdamping;
shapeProps->m_friction_scaling[0] = blenderobject->anisotropicFriction[0];
shapeProps->m_friction_scaling[1] = blenderobject->anisotropicFriction[1];
shapeProps->m_friction_scaling[2] = blenderobject->anisotropicFriction[2];
shapeProps->m_do_anisotropic = ((blenderobject->gameflag & OB_ANISOTROPIC_FRICTION) != 0);
shapeProps->m_do_fh = (blenderobject->gameflag & OB_DO_FH) != 0;
shapeProps->m_do_rot_fh = (blenderobject->gameflag & OB_ROT_FH) != 0;
// velocity clamping XXX
shapeProps->m_clamp_vel_min = blenderobject->min_vel;
shapeProps->m_clamp_vel_max = blenderobject->max_vel;
shapeProps->m_clamp_angvel_min = blenderobject->min_angvel;
shapeProps->m_clamp_angvel_max = blenderobject->max_angvel;
// Character physics properties
shapeProps->m_step_height = blenderobject->step_height;
shapeProps->m_jump_speed = blenderobject->jump_speed;
shapeProps->m_fall_speed = blenderobject->fall_speed;
shapeProps->m_max_jumps = blenderobject->max_jumps;
return shapeProps;
}
//////////////////////////////////////////////////////////
static float my_boundbox_mesh(Mesh *me, float *loc, float *size)
{
MVert *mvert;
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
float radius_sq=0.0f, vert_radius_sq, *co;
int a;
if (me->bb==0) {
me->bb = BKE_boundbox_alloc_unit();
}
bb= me->bb;
INIT_MINMAX(min, max);
if (!loc) loc= mloc;
if (!size) size= msize;
mvert= me->mvert;
for (a = 0; a<me->totvert; a++, mvert++) {
co = mvert->co;
/* bounds */
minmax_v3v3_v3(min, max, co);
/* radius */
vert_radius_sq = len_squared_v3(co);
if (vert_radius_sq > radius_sq)
radius_sq = vert_radius_sq;
}
if (me->totvert) {
loc[0] = (min[0] + max[0]) / 2.0f;
loc[1] = (min[1] + max[1]) / 2.0f;
loc[2] = (min[2] + max[2]) / 2.0f;
size[0] = (max[0] - min[0]) / 2.0f;
size[1] = (max[1] - min[1]) / 2.0f;
size[2] = (max[2] - min[2]) / 2.0f;
}
else {
loc[0] = loc[1] = loc[2] = 0.0f;
size[0] = size[1] = size[2] = 0.0f;
}
bb->vec[0][0] = bb->vec[1][0] = bb->vec[2][0] = bb->vec[3][0] = loc[0]-size[0];
bb->vec[4][0] = bb->vec[5][0] = bb->vec[6][0] = bb->vec[7][0] = loc[0]+size[0];
bb->vec[0][1] = bb->vec[1][1] = bb->vec[4][1] = bb->vec[5][1] = loc[1]-size[1];
bb->vec[2][1] = bb->vec[3][1] = bb->vec[6][1] = bb->vec[7][1] = loc[1]+size[1];
bb->vec[0][2] = bb->vec[3][2] = bb->vec[4][2] = bb->vec[7][2] = loc[2]-size[2];
bb->vec[1][2] = bb->vec[2][2] = bb->vec[5][2] = bb->vec[6][2] = loc[2]+size[2];
return sqrtf_signed(radius_sq);
}
//////////////////////////////////////////////////////
static void BL_CreateGraphicObjectNew(KX_GameObject* gameobj,
const MT_Point3& localAabbMin,
const MT_Point3& localAabbMax,
KX_Scene* kxscene,
bool isActive,
e_PhysicsEngine physics_engine)
{
if (gameobj->GetMeshCount() > 0)
{
switch (physics_engine)
{
#ifdef WITH_BULLET
case UseBullet:
{
CcdPhysicsEnvironment* env = (CcdPhysicsEnvironment*)kxscene->GetPhysicsEnvironment();
assert(env);
PHY_IMotionState* motionstate = new KX_MotionState(gameobj->GetSGNode());
CcdGraphicController* ctrl = new CcdGraphicController(env, motionstate);
gameobj->SetGraphicController(ctrl);
ctrl->SetNewClientInfo(gameobj->getClientInfo());
ctrl->SetLocalAabb(localAabbMin, localAabbMax);
if (isActive) {
// add first, this will create the proxy handle, only if the object is visible
if (gameobj->GetVisible())
env->AddCcdGraphicController(ctrl);
// update the mesh if there is a deformer, this will also update the bounding box for modifiers
RAS_Deformer* deformer = gameobj->GetDeformer();
if (deformer)
deformer->UpdateBuckets();
}
}
break;
#endif
default:
break;
}
}
}
static void BL_CreatePhysicsObjectNew(KX_GameObject* gameobj,
struct Object* blenderobject,
RAS_MeshObject* meshobj,
KX_Scene* kxscene,
int activeLayerBitInfo,
KX_BlenderSceneConverter *converter,
bool processCompoundChildren
)
{
//SYS_SystemHandle syshandle = SYS_GetSystem(); /*unused*/
//int userigidbody = SYS_GetCommandLineInt(syshandle,"norigidbody",0);
//bool bRigidBody = (userigidbody == 0);
// object has physics representation?
if (!(blenderobject->gameflag & OB_COLLISION)) {
// Respond to all collisions so that Near sensors work on No Collision
// objects.
gameobj->SetUserCollisionGroup(0xffff);
gameobj->SetUserCollisionMask(0xffff);
return;
}
gameobj->SetUserCollisionGroup(blenderobject->col_group);
gameobj->SetUserCollisionMask(blenderobject->col_mask);
// get Root Parent of blenderobject
struct Object* parent= blenderobject->parent;
while (parent && parent->parent) {
parent= parent->parent;
}
bool isCompoundChild = false;
bool hasCompoundChildren = !parent && (blenderobject->gameflag & OB_CHILD) && !(blenderobject->gameflag & OB_SOFT_BODY);
/* When the parent is not OB_DYNAMIC and has no OB_COLLISION then it gets no bullet controller
* and cant be apart of the parents compound shape, same goes for OB_SOFT_BODY */
if (parent && (parent->gameflag & (OB_DYNAMIC | OB_COLLISION))) {
if ((parent->gameflag & OB_CHILD)!=0 && (blenderobject->gameflag & OB_CHILD) && !(parent->gameflag & OB_SOFT_BODY)) {
isCompoundChild = true;
}
}
if (processCompoundChildren != isCompoundChild)
return;
PHY_ShapeProps* shapeprops =
CreateShapePropsFromBlenderObject(blenderobject);
PHY_MaterialProps* smmaterial =
CreateMaterialFromBlenderObject(blenderobject);
DerivedMesh* dm = NULL;
if (gameobj->GetDeformer())
dm = gameobj->GetDeformer()->GetPhysicsMesh();
class PHY_IMotionState* motionstate = new KX_MotionState(gameobj->GetSGNode());
kxscene->GetPhysicsEnvironment()->ConvertObject(gameobj, meshobj, dm, kxscene, shapeprops, smmaterial, motionstate, activeLayerBitInfo, isCompoundChild, hasCompoundChildren);
bool isActor = (blenderobject->gameflag & OB_ACTOR)!=0;
bool isSensor = (blenderobject->gameflag & OB_SENSOR) != 0;
gameobj->getClientInfo()->m_type =
(isSensor) ? ((isActor) ? KX_ClientObjectInfo::OBACTORSENSOR : KX_ClientObjectInfo::OBSENSOR) :
(isActor) ? KX_ClientObjectInfo::ACTOR : KX_ClientObjectInfo::STATIC;
// should we record animation for this object?
if ((blenderobject->gameflag & OB_RECORD_ANIMATION) != 0)
gameobj->SetRecordAnimation(true);
delete shapeprops;
delete smmaterial;
if (dm) {
dm->needsFree = 1;
dm->release(dm);
}
}
static KX_LightObject *gamelight_from_blamp(Object *ob, Lamp *la, unsigned int layerflag, KX_Scene *kxscene, RAS_IRasterizer *rasterizer, KX_BlenderSceneConverter *converter)
{
RAS_ILightObject *lightobj = rasterizer->CreateLight();
KX_LightObject *gamelight;
lightobj->m_att1 = la->att1;
lightobj->m_att2 = (la->mode & LA_QUAD) ? la->att2 : 0.0f;
lightobj->m_coeff_const = la->coeff_const;
lightobj->m_coeff_lin = la->coeff_lin;
lightobj->m_coeff_quad = la->coeff_quad;
lightobj->m_color[0] = la->r;
lightobj->m_color[1] = la->g;
lightobj->m_color[2] = la->b;
lightobj->m_distance = la->dist;
lightobj->m_energy = la->energy;
lightobj->m_shadowclipstart = la->clipsta;
lightobj->m_shadowclipend = la->clipend;
lightobj->m_shadowbias = la->bias;
lightobj->m_shadowbleedbias = la->bleedbias;
lightobj->m_shadowmaptype = la->shadowmap_type;
lightobj->m_shadowfrustumsize = la->shadow_frustum_size;
lightobj->m_shadowcolor[0] = la->shdwr;
lightobj->m_shadowcolor[1] = la->shdwg;
lightobj->m_shadowcolor[2] = la->shdwb;
lightobj->m_layer = layerflag;
lightobj->m_spotblend = la->spotblend;
lightobj->m_spotsize = la->spotsize;
lightobj->m_nodiffuse = (la->mode & LA_NO_DIFF) != 0;
lightobj->m_nospecular = (la->mode & LA_NO_SPEC) != 0;
bool glslmat = converter->GetGLSLMaterials();
// in GLSL NEGATIVE LAMP is handled inside the lamp update function
if (glslmat==0) {
if (la->mode & LA_NEG)
{
lightobj->m_color[0] = -lightobj->m_color[0];
lightobj->m_color[1] = -lightobj->m_color[1];
lightobj->m_color[2] = -lightobj->m_color[2];
}
}
if (la->type==LA_SUN) {
lightobj->m_type = RAS_ILightObject::LIGHT_SUN;
} else if (la->type==LA_SPOT) {
lightobj->m_type = RAS_ILightObject::LIGHT_SPOT;
} else {
lightobj->m_type = RAS_ILightObject::LIGHT_NORMAL;
}
gamelight = new KX_LightObject(kxscene, KX_Scene::m_callbacks, rasterizer,
lightobj, glslmat);
return gamelight;
}
static KX_Camera *gamecamera_from_bcamera(Object *ob, KX_Scene *kxscene, KX_BlenderSceneConverter *converter)
{
Camera* ca = static_cast<Camera*>(ob->data);
RAS_CameraData camdata(ca->lens, ca->ortho_scale, ca->sensor_x, ca->sensor_y, ca->sensor_fit, ca->shiftx, ca->shifty, ca->clipsta, ca->clipend, ca->type == CAM_PERSP, ca->YF_dofdist);
KX_Camera *gamecamera;
gamecamera= new KX_Camera(kxscene, KX_Scene::m_callbacks, camdata);
gamecamera->SetName(ca->id.name + 2);
return gamecamera;
}
static KX_GameObject *gameobject_from_blenderobject(
Object *ob,
KX_Scene *kxscene,
RAS_IRasterizer *rendertools,
KX_BlenderSceneConverter *converter,
bool libloading)
{
KX_GameObject *gameobj = NULL;
Scene *blenderscene = kxscene->GetBlenderScene();
switch (ob->type) {
case OB_LAMP:
{
KX_LightObject* gamelight = gamelight_from_blamp(ob, static_cast<Lamp*>(ob->data), ob->lay, kxscene, rendertools, converter);
gameobj = gamelight;
if (blenderscene->lay & ob->lay)
{
gamelight->AddRef();
kxscene->GetLightList()->Add(gamelight);
}
break;
}
case OB_CAMERA:
{
KX_Camera* gamecamera = gamecamera_from_bcamera(ob, kxscene, converter);
gameobj = gamecamera;
//don't add a reference: the camera list in kxscene->m_cameras is not released at the end
//gamecamera->AddRef();
kxscene->AddCamera(gamecamera);
break;
}
case OB_MESH:
{
Mesh* mesh = static_cast<Mesh*>(ob->data);
float center[3], extents[3];
float radius = my_boundbox_mesh((Mesh*) ob->data, center, extents);
RAS_MeshObject* meshobj = BL_ConvertMesh(mesh,ob,kxscene,converter, libloading);
// needed for python scripting
kxscene->GetLogicManager()->RegisterMeshName(meshobj->GetName(),meshobj);
if (ob->gameflag & OB_NAVMESH)
{
gameobj = new KX_NavMeshObject(kxscene,KX_Scene::m_callbacks);
gameobj->AddMesh(meshobj);
break;
}
gameobj = new BL_DeformableGameObject(ob,kxscene,KX_Scene::m_callbacks);
// set transformation
gameobj->AddMesh(meshobj);
// gather levels of detail
if (BLI_listbase_count_ex(&ob->lodlevels, 2) > 1) {
LodLevel *lod = ((LodLevel*)ob->lodlevels.first)->next;
Mesh* lodmesh = mesh;
Object* lodmatob = ob;
gameobj->AddLodMesh(meshobj);
for (; lod; lod = lod->next) {
if (!lod->source || lod->source->type != OB_MESH) continue;
if (lod->flags & OB_LOD_USE_MESH) {
lodmesh = static_cast<Mesh*>(lod->source->data);
}
if (lod->flags & OB_LOD_USE_MAT) {
lodmatob = lod->source;
}
gameobj->AddLodMesh(BL_ConvertMesh(lodmesh, lodmatob, kxscene, converter, libloading));
}
if (blenderscene->gm.lodflag & SCE_LOD_USE_HYST) {
kxscene->SetLodHysteresis(true);
kxscene->SetLodHysteresisValue(blenderscene->gm.scehysteresis);
}
}
// for all objects: check whether they want to
// respond to updates
bool ignoreActivityCulling =
((ob->gameflag2 & OB_NEVER_DO_ACTIVITY_CULLING)!=0);
gameobj->SetIgnoreActivityCulling(ignoreActivityCulling);
gameobj->SetOccluder((ob->gameflag & OB_OCCLUDER) != 0, false);
// we only want obcolor used if there is a material in the mesh
// that requires it
Material *mat= NULL;
bool bUseObjectColor=false;
for (int i=0;i<mesh->totcol;i++) {
mat=mesh->mat[i];
if (!mat) break;
if ((mat->shade_flag & MA_OBCOLOR)) {
bUseObjectColor = true;
break;
}
}
if (bUseObjectColor)
gameobj->SetObjectColor(ob->col);
// two options exists for deform: shape keys and armature
// only support relative shape key
bool bHasShapeKey = mesh->key != NULL && mesh->key->type==KEY_RELATIVE;
bool bHasDvert = mesh->dvert != NULL && ob->defbase.first;
bool bHasArmature = (BL_ModifierDeformer::HasArmatureDeformer(ob) && ob->parent && ob->parent->type == OB_ARMATURE && bHasDvert);
bool bHasModifier = BL_ModifierDeformer::HasCompatibleDeformer(ob);
#ifdef WITH_BULLET
bool bHasSoftBody = (!ob->parent && (ob->gameflag & OB_SOFT_BODY));
#endif
if (bHasModifier) {
BL_ModifierDeformer *dcont = new BL_ModifierDeformer((BL_DeformableGameObject *)gameobj,
kxscene->GetBlenderScene(), ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
} else if (bHasShapeKey) {
// not that we can have shape keys without dvert!
BL_ShapeDeformer *dcont = new BL_ShapeDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
} else if (bHasArmature) {
BL_SkinDeformer *dcont = new BL_SkinDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
} else if (bHasDvert) {
// this case correspond to a mesh that can potentially deform but not with the
// object to which it is attached for the moment. A skin mesh was created in
// BL_ConvertMesh() so must create a deformer too!
BL_MeshDeformer *dcont = new BL_MeshDeformer((BL_DeformableGameObject*)gameobj,
ob, meshobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
#ifdef WITH_BULLET
} else if (bHasSoftBody) {
KX_SoftBodyDeformer *dcont = new KX_SoftBodyDeformer(meshobj, (BL_DeformableGameObject*)gameobj);
((BL_DeformableGameObject*)gameobj)->SetDeformer(dcont);
#endif
}
MT_Point3 min = MT_Point3(center) - MT_Vector3(extents);
MT_Point3 max = MT_Point3(center) + MT_Vector3(extents);
SG_BBox bbox = SG_BBox(min, max);
gameobj->GetSGNode()->SetBBox(bbox);
gameobj->GetSGNode()->SetRadius(radius);
break;
}
case OB_ARMATURE:
{
bArmature *arm = (bArmature*)ob->data;
gameobj = new BL_ArmatureObject(
kxscene,
KX_Scene::m_callbacks,
ob,
kxscene->GetBlenderScene(), // handle
arm->gevertdeformer
);
/* Get the current pose from the armature object and apply it as the rest pose */
break;
}
case OB_EMPTY:
{
gameobj = new KX_EmptyObject(kxscene,KX_Scene::m_callbacks);
// set transformation
break;
}
case OB_FONT:
{
bool do_color_management = BKE_scene_check_color_management_enabled(blenderscene);
/* font objects have no bounding box */
gameobj = new KX_FontObject(kxscene,KX_Scene::m_callbacks, rendertools, ob, do_color_management);
/* add to the list only the visible fonts */
if ((ob->lay & kxscene->GetBlenderScene()->lay) != 0)
kxscene->AddFont(static_cast<KX_FontObject*>(gameobj));
break;
}
#ifdef THREADED_DAG_WORKAROUND
case OB_CURVE:
{
if (ob->curve_cache == NULL) {
BKE_displist_make_curveTypes(blenderscene, ob, false);
}
}
#endif
}
if (gameobj)
{
gameobj->SetLayer(ob->lay);
gameobj->SetBlenderObject(ob);
/* set the visibility state based on the objects render option in the outliner */
if (ob->restrictflag & OB_RESTRICT_RENDER) gameobj->SetVisible(0, 0);
}
return gameobj;
}
struct parentChildLink {
struct Object* m_blenderchild;
SG_Node* m_gamechildnode;
};
static bPoseChannel *get_active_posechannel2(Object *ob)
{
bArmature *arm= (bArmature*)ob->data;
bPoseChannel *pchan;
/* find active */
for (pchan= (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan= pchan->next) {
if (pchan->bone && (pchan->bone == arm->act_bone) && (pchan->bone->layer & arm->layer))
return pchan;
}
return NULL;
}
static ListBase *get_active_constraints2(Object *ob)
{
if (!ob)
return NULL;
// XXX - shouldnt we care about the pose data and not the mode???
if (ob->mode & OB_MODE_POSE) {
bPoseChannel *pchan;
pchan = get_active_posechannel2(ob);
if (pchan)
return &pchan->constraints;
}
else
return &ob->constraints;
return NULL;
}
static void UNUSED_FUNCTION(print_active_constraints2)(Object *ob) //not used, use to debug
{
bConstraint* curcon;
ListBase* conlist = get_active_constraints2(ob);
if (conlist) {
for (curcon = (bConstraint *)conlist->first; curcon; curcon = (bConstraint *)curcon->next) {
printf("%i\n",curcon->type);
}
}
}
// Copy base layer to object layer like in BKE_scene_set_background
static void blenderSceneSetBackground(Scene *blenderscene)
{
Scene *it;
Base *base;
for (SETLOOPER(blenderscene, it, base)) {
base->object->lay = base->lay;
base->object->flag = base->flag;
}
}
static KX_GameObject* getGameOb(STR_String busc,CListValue* sumolist)
{
for (int j=0;j<sumolist->GetCount();j++)
{
KX_GameObject* gameobje = (KX_GameObject*) sumolist->GetValue(j);
if (gameobje->GetName()==busc)
return gameobje;
}
return 0;
}
static bool bl_isConstraintInList(KX_GameObject *gameobj, set<KX_GameObject*> convertedlist)
{
set<KX_GameObject*>::iterator gobit;
for (gobit = convertedlist.begin(); gobit != convertedlist.end(); gobit++) {
if ((*gobit)->GetName() == gameobj->GetName())
return true;
}
return false;
}
/* helper for BL_ConvertBlenderObjects, avoids code duplication
* note: all var names match args are passed from the caller */
static void bl_ConvertBlenderObject_Single(
KX_BlenderSceneConverter *converter,
Object *blenderobject,
vector<parentChildLink> &vec_parent_child,
CListValue* logicbrick_conversionlist,
CListValue* objectlist, CListValue* inactivelist, CListValue* sumolist,
KX_Scene* kxscene, KX_GameObject* gameobj,
SCA_LogicManager* logicmgr, SCA_TimeEventManager* timemgr,
bool isInActiveLayer
)
{
MT_Point3 pos(
blenderobject->loc[0]+blenderobject->dloc[0],
blenderobject->loc[1]+blenderobject->dloc[1],
blenderobject->loc[2]+blenderobject->dloc[2]
);
MT_Matrix3x3 rotation;
float rotmat[3][3];
BKE_object_rot_to_mat3(blenderobject, rotmat, false);
rotation.setValue3x3((float*)rotmat);
MT_Vector3 scale(blenderobject->size);
gameobj->NodeSetLocalPosition(pos);
gameobj->NodeSetLocalOrientation(rotation);
gameobj->NodeSetLocalScale(scale);
gameobj->NodeUpdateGS(0);
sumolist->Add(gameobj->AddRef());
BL_ConvertProperties(blenderobject,gameobj,timemgr,kxscene,isInActiveLayer);
gameobj->SetName(blenderobject->id.name + 2);
// update children/parent hierarchy
if (blenderobject->parent != 0)
{
// blender has an additional 'parentinverse' offset in each object
SG_Callbacks callback(NULL,NULL,NULL,KX_Scene::KX_ScenegraphUpdateFunc,KX_Scene::KX_ScenegraphRescheduleFunc);
SG_Node* parentinversenode = new SG_Node(NULL,kxscene,callback);
// define a normal parent relationship for this node.
KX_NormalParentRelation * parent_relation = KX_NormalParentRelation::New();
parentinversenode->SetParentRelation(parent_relation);
parentChildLink pclink;
pclink.m_blenderchild = blenderobject;
pclink.m_gamechildnode = parentinversenode;
vec_parent_child.push_back(pclink);
float* fl = (float*) blenderobject->parentinv;
MT_Transform parinvtrans(fl);
parentinversenode->SetLocalPosition(parinvtrans.getOrigin());
// problem here: the parent inverse transform combines scaling and rotation
// in the basis but the scenegraph needs separate rotation and scaling.
// This is not important for OpenGL (it uses 4x4 matrix) but it is important
// for the physic engine that needs a separate scaling
//parentinversenode->SetLocalOrientation(parinvtrans.getBasis());
// Extract the rotation and the scaling from the basis
MT_Matrix3x3 ori(parinvtrans.getBasis());
MT_Vector3 x(ori.getColumn(0));
MT_Vector3 y(ori.getColumn(1));
MT_Vector3 z(ori.getColumn(2));
MT_Vector3 parscale(x.length(), y.length(), z.length());
if (!MT_fuzzyZero(parscale[0]))
x /= parscale[0];
if (!MT_fuzzyZero(parscale[1]))
y /= parscale[1];
if (!MT_fuzzyZero(parscale[2]))
z /= parscale[2];
ori.setColumn(0, x);
ori.setColumn(1, y);
ori.setColumn(2, z);
parentinversenode->SetLocalOrientation(ori);
parentinversenode->SetLocalScale(parscale);
parentinversenode->AddChild(gameobj->GetSGNode());
}
// needed for python scripting
logicmgr->RegisterGameObjectName(gameobj->GetName(),gameobj);
// needed for group duplication
logicmgr->RegisterGameObj(blenderobject, gameobj);
for (int i = 0; i < gameobj->GetMeshCount(); i++)
logicmgr->RegisterGameMeshName(gameobj->GetMesh(i)->GetName(), blenderobject);
converter->RegisterGameObject(gameobj, blenderobject);
// this was put in rapidly, needs to be looked at more closely
// only draw/use objects in active 'blender' layers
logicbrick_conversionlist->Add(gameobj->AddRef());
if (isInActiveLayer)
{
objectlist->Add(gameobj->AddRef());
//tf.Add(gameobj->GetSGNode());
gameobj->NodeUpdateGS(0);
gameobj->AddMeshUser();
}
else
{
//we must store this object otherwise it will be deleted
//at the end of this function if it is not a root object
inactivelist->Add(gameobj->AddRef());
}
}
// convert blender objects into ketsji gameobjects
void BL_ConvertBlenderObjects(struct Main* maggie,
KX_Scene* kxscene,
KX_KetsjiEngine* ketsjiEngine,
e_PhysicsEngine physics_engine,
RAS_IRasterizer* rendertools,
RAS_ICanvas* canvas,
KX_BlenderSceneConverter* converter,
bool alwaysUseExpandFraming,
bool libloading
)
{
#define BL_CONVERTBLENDEROBJECT_SINGLE \
bl_ConvertBlenderObject_Single(converter, \
blenderobject, \
vec_parent_child, \
logicbrick_conversionlist, \
objectlist, inactivelist, sumolist, \
kxscene, gameobj, \
logicmgr, timemgr, \
isInActiveLayer \
)
Scene *blenderscene = kxscene->GetBlenderScene();
// for SETLOOPER
Scene *sce_iter;
Base *base;
// Get the frame settings of the canvas.
// Get the aspect ratio of the canvas as designed by the user.
RAS_FrameSettings::RAS_FrameType frame_type;
int aspect_width;
int aspect_height;
set<Group*> grouplist; // list of groups to be converted
set<Object*> allblobj; // all objects converted
set<Object*> groupobj; // objects from groups (never in active layer)
// This is bad, but we use this to make sure the first time this is called
// is not in a separate thread.
BL_Texture::GetMaxUnits();
/* We have to ensure that group definitions are only converted once
* push all converted group members to this set.
* This will happen when a group instance is made from a linked group instance
* and both are on the active layer. */
set<KX_GameObject*> convertedlist;
if (alwaysUseExpandFraming) {
frame_type = RAS_FrameSettings::e_frame_extend;
aspect_width = canvas->GetWidth();
aspect_height = canvas->GetHeight();
} else {
if (blenderscene->gm.framing.type == SCE_GAMEFRAMING_BARS) {
frame_type = RAS_FrameSettings::e_frame_bars;
} else if (blenderscene->gm.framing.type == SCE_GAMEFRAMING_EXTEND) {
frame_type = RAS_FrameSettings::e_frame_extend;
} else {
frame_type = RAS_FrameSettings::e_frame_scale;
}
aspect_width = (int)(blenderscene->r.xsch * blenderscene->r.xasp);
aspect_height = (int)(blenderscene->r.ysch * blenderscene->r.yasp);
}
RAS_FrameSettings frame_settings(
frame_type,
blenderscene->gm.framing.col[0],
blenderscene->gm.framing.col[1],
blenderscene->gm.framing.col[2],
aspect_width,
aspect_height
);
kxscene->SetFramingType(frame_settings);
kxscene->SetGravity(MT_Vector3(0,0, -blenderscene->gm.gravity));
/* set activity culling parameters */
kxscene->SetActivityCulling( (blenderscene->gm.mode & WO_ACTIVITY_CULLING) != 0);
kxscene->SetActivityCullingRadius(blenderscene->gm.activityBoxRadius);
kxscene->SetDbvtCulling((blenderscene->gm.mode & WO_DBVT_CULLING) != 0);
// no occlusion culling by default
kxscene->SetDbvtOcclusionRes(0);
int activeLayerBitInfo = blenderscene->lay;
// list of all object converted, active and inactive
CListValue* sumolist = new CListValue();
vector<parentChildLink> vec_parent_child;
CListValue* objectlist = kxscene->GetObjectList();
CListValue* inactivelist = kxscene->GetInactiveList();
CListValue* parentlist = kxscene->GetRootParentList();
SCA_LogicManager* logicmgr = kxscene->GetLogicManager();
SCA_TimeEventManager* timemgr = kxscene->GetTimeEventManager();
CListValue* logicbrick_conversionlist = new CListValue();
//SG_TreeFactory tf;
// Convert actions to actionmap
bAction *curAct;
for (curAct = (bAction*)maggie->action.first; curAct; curAct=(bAction*)curAct->id.next)
{
logicmgr->RegisterActionName(curAct->id.name + 2, curAct);
}
SetDefaultLightMode(blenderscene);
blenderSceneSetBackground(blenderscene);
// Let's support scene set.
// Beware of name conflict in linked data, it will not crash but will create confusion
// in Python scripting and in certain actuators (replace mesh). Linked scene *should* have
// no conflicting name for Object, Object data and Action.
for (SETLOOPER(blenderscene, sce_iter, base))
{
Object* blenderobject = base->object;
allblobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
base->object,
kxscene,
rendertools,
converter,
libloading);
bool isInActiveLayer = (blenderobject->lay & activeLayerBitInfo) !=0;
if (gameobj)
{
/* macro calls object conversion funcs */
BL_CONVERTBLENDEROBJECT_SINGLE;
if (gameobj->IsDupliGroup()) {
grouplist.insert(blenderobject->dup_group);
}
/* Note about memory leak issues:
* When a CValue derived class is created, m_refcount is initialized to 1
* so the class must be released after being used to make sure that it won't
* hang in memory. If the object needs to be stored for a long time,
* use AddRef() so that this Release() does not free the object.
* Make sure that for any AddRef() there is a Release()!!!!
* Do the same for any object derived from CValue, CExpression and NG_NetworkMessage
*/
gameobj->Release();
}
}
if (!grouplist.empty())
{
// now convert the group referenced by dupli group object
// keep track of all groups already converted
set<Group*> allgrouplist = grouplist;
set<Group*> tempglist;
// recurse
while (!grouplist.empty())
{
set<Group*>::iterator git;
tempglist.clear();
tempglist.swap(grouplist);
for (git=tempglist.begin(); git!=tempglist.end(); git++)
{
Group* group = *git;
GroupObject* go;
for (go=(GroupObject*)group->gobject.first; go; go=(GroupObject*)go->next)
{
Object* blenderobject = go->ob;
if (converter->FindGameObject(blenderobject) == NULL)
{
allblobj.insert(blenderobject);
groupobj.insert(blenderobject);
KX_GameObject* gameobj = gameobject_from_blenderobject(
blenderobject,
kxscene,
rendertools,
converter,
libloading);
bool isInActiveLayer = false;
if (gameobj) {
/* Insert object to the constraint game object list
* so we can check later if there is a instance in the scene or
* an instance and its actual group definition. */
convertedlist.insert((KX_GameObject*)gameobj->AddRef());
/* macro calls object conversion funcs */
BL_CONVERTBLENDEROBJECT_SINGLE;
if (gameobj->IsDupliGroup())
{
if (allgrouplist.insert(blenderobject->dup_group).second)
{
grouplist.insert(blenderobject->dup_group);
}
}
/* see comment above re: mem leaks */
gameobj->Release();
}
}
}
}
}
}
// non-camera objects not supported as camera currently
if (blenderscene->camera && blenderscene->camera->type == OB_CAMERA) {
KX_Camera *gamecamera= (KX_Camera*) converter->FindGameObject(blenderscene->camera);
if (gamecamera)
kxscene->SetActiveCamera(gamecamera);
}
// Set up armatures
set<Object*>::iterator oit;
for (oit=allblobj.begin(); oit!=allblobj.end(); oit++)
{
Object* blenderobj = *oit;
if (blenderobj->type==OB_MESH) {
Mesh *me = (Mesh*)blenderobj->data;
if (me->dvert) {
BL_DeformableGameObject *obj = (BL_DeformableGameObject*)converter->FindGameObject(blenderobj);
if (obj && BL_ModifierDeformer::HasArmatureDeformer(blenderobj) && blenderobj->parent && blenderobj->parent->type==OB_ARMATURE) {
KX_GameObject *par = converter->FindGameObject(blenderobj->parent);
if (par && obj->GetDeformer())
((BL_SkinDeformer*)obj->GetDeformer())->SetArmature((BL_ArmatureObject*) par);
}
}
}
}
// create hierarchy information
int i;
vector<parentChildLink>::iterator pcit;
for (pcit = vec_parent_child.begin();!(pcit==vec_parent_child.end());++pcit)
{
struct Object* blenderchild = pcit->m_blenderchild;
struct Object* blenderparent = blenderchild->parent;
KX_GameObject* parentobj = converter->FindGameObject(blenderparent);
KX_GameObject* childobj = converter->FindGameObject(blenderchild);
assert(childobj);
if (!parentobj || objectlist->SearchValue(childobj) != objectlist->SearchValue(parentobj))
{
// special case: the parent and child object are not in the same layer.
// This weird situation is used in Apricot for test purposes.
// Resolve it by not converting the child
childobj->GetSGNode()->DisconnectFromParent();
delete pcit->m_gamechildnode;
// Now destroy the child object but also all its descendent that may already be linked
// Remove the child reference in the local list!
// Note: there may be descendents already if the children of the child were processed
// by this loop before the child. In that case, we must remove the children also
CListValue* childrenlist = childobj->GetChildrenRecursive();
childrenlist->Add(childobj->AddRef());
for ( i=0;i<childrenlist->GetCount();i++)
{
KX_GameObject* obj = static_cast<KX_GameObject*>(childrenlist->GetValue(i));
if (sumolist->RemoveValue(obj))
obj->Release();
if (logicbrick_conversionlist->RemoveValue(obj))
obj->Release();
}
childrenlist->Release();
// now destroy recursively
converter->UnregisterGameObject(childobj); // removing objects during conversion make sure this runs too
kxscene->RemoveObject(childobj);
continue;
}
switch (blenderchild->partype)
{
case PARVERT1:
{
// creat a new vertex parent relationship for this node.
KX_VertexParentRelation * vertex_parent_relation = KX_VertexParentRelation::New();
pcit->m_gamechildnode->SetParentRelation(vertex_parent_relation);
break;
}
case PARSLOW:
{
// creat a new slow parent relationship for this node.
KX_SlowParentRelation * slow_parent_relation = KX_SlowParentRelation::New(blenderchild->sf);
pcit->m_gamechildnode->SetParentRelation(slow_parent_relation);
break;
}
case PARBONE:
{
// parent this to a bone
Bone *parent_bone = BKE_armature_find_bone_name(BKE_armature_from_object(blenderchild->parent),
blenderchild->parsubstr);
if (parent_bone) {
KX_BoneParentRelation *bone_parent_relation = KX_BoneParentRelation::New(parent_bone);
pcit->m_gamechildnode->SetParentRelation(bone_parent_relation);
}
break;
}
case PARSKEL: // skinned - ignore
break;
case PAROBJECT:
case PARVERT3:
default:
// unhandled
break;
}
parentobj-> GetSGNode()->AddChild(pcit->m_gamechildnode);
}
vec_parent_child.clear();
// find 'root' parents (object that has not parents in SceneGraph)
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetSGNode()->GetSGParent() == 0)
{
parentlist->Add(gameobj->AddRef());
gameobj->NodeUpdateGS(0);
}
}
// create graphic controller for culling
if (kxscene->GetDbvtCulling())
{
bool occlusion = false;
for (i=0; i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetMeshCount() > 0)
{
MT_Point3 box[2];
gameobj->GetSGNode()->BBox().getmm(box, MT_Transform::Identity());
// box[0] is the min, box[1] is the max
bool isactive = objectlist->SearchValue(gameobj);
BL_CreateGraphicObjectNew(gameobj,box[0],box[1],kxscene,isactive,physics_engine);
if (gameobj->GetOccluder())
occlusion = true;
}
}
if (occlusion)
kxscene->SetDbvtOcclusionRes(blenderscene->gm.occlusionRes);
}
if (blenderscene->world)
kxscene->GetPhysicsEnvironment()->SetNumTimeSubSteps(blenderscene->gm.physubstep);
// now that the scenegraph is complete, let's instantiate the deformers.
// We need that to create reusable derived mesh and physic shapes
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetDeformer())
gameobj->GetDeformer()->UpdateBuckets();
}
// Set up armature constraints and shapekey drivers
for (i=0;i<sumolist->GetCount();++i)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
if (gameobj->GetGameObjectType() == SCA_IObject::OBJ_ARMATURE)
{
BL_ArmatureObject *armobj = (BL_ArmatureObject*)gameobj;
armobj->LoadConstraints(converter);
CListValue *children = armobj->GetChildren();
for (int j=0; j<children->GetCount();++j)
{
BL_ShapeDeformer *deform = dynamic_cast<BL_ShapeDeformer*>(((KX_GameObject*)children->GetValue(j))->GetDeformer());
if (deform)
deform->LoadShapeDrivers(armobj);
}
children->Release();
}
}
bool processCompoundChildren = false;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = gameobj->GetBlenderObject();
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,converter,processCompoundChildren);
}
processCompoundChildren = true;
// create physics information
for (i=0;i<sumolist->GetCount();i++)
{
KX_GameObject* gameobj = (KX_GameObject*) sumolist->GetValue(i);
struct Object* blenderobject = gameobj->GetBlenderObject();
int nummeshes = gameobj->GetMeshCount();
RAS_MeshObject* meshobj = 0;
if (nummeshes > 0)
{
meshobj = gameobj->GetMesh(0);
}
int layerMask = (groupobj.find(blenderobject) == groupobj.end()) ? activeLayerBitInfo : 0;
BL_CreatePhysicsObjectNew(gameobj,blenderobject,meshobj,kxscene,layerMask,converter,processCompoundChildren);
}
// create physics joints
for (i=0;i<sumolist->GetCount();i++)
{
PHY_IPhysicsEnvironment *physEnv = kxscene->GetPhysicsEnvironment();
KX_GameObject *gameobj = (KX_GameObject *)sumolist->GetValue(i);
struct Object *blenderobject = gameobj->GetBlenderObject();
ListBase *conlist = get_active_constraints2(blenderobject);
bConstraint *curcon;
if (!conlist)
continue;
for (curcon = (bConstraint *)conlist->first; curcon; curcon = (bConstraint *)curcon->next) {
if (curcon->type != CONSTRAINT_TYPE_RIGIDBODYJOINT)
continue;
bRigidBodyJointConstraint *dat = (bRigidBodyJointConstraint *)curcon->data;
/* Skip if no target or a child object is selected or constraints are deactivated */
if (!dat->tar || dat->child || (curcon->flag & CONSTRAINT_OFF))
continue;
/* Store constraints of grouped and instanced objects for all layers */
gameobj->AddConstraint(dat);
/** if it's during libload we only add constraints in the object but
* doesn't create it. Constraint will be replicated later in scene->MergeScene
*/
if (libloading)
continue;
/* Skipped already converted constraints.
* This will happen when a group instance is made from a linked group instance
* and both are on the active layer. */
if (bl_isConstraintInList(gameobj, convertedlist))
continue;
KX_GameObject *gotar = getGameOb(dat->tar->id.name + 2, sumolist);
if (gotar && (gotar->GetLayer()&activeLayerBitInfo) && gotar->GetPhysicsController() &&
(gameobj->GetLayer()&activeLayerBitInfo) && gameobj->GetPhysicsController())
{
physEnv->SetupObjectConstraints(gameobj, gotar, dat);
}
}
}
/* cleanup converted set of group objects */
set<KX_GameObject*>::iterator gobit;
for (gobit = convertedlist.begin(); gobit != convertedlist.end(); gobit++)
(*gobit)->Release();
convertedlist.clear();
sumolist->Release();
// convert world
KX_WorldInfo* worldinfo = new KX_WorldInfo(blenderscene, blenderscene->world);
converter->RegisterWorldInfo(worldinfo);
kxscene->SetWorldInfo(worldinfo);
//create object representations for obstacle simulation
KX_ObstacleSimulation* obssimulation = kxscene->GetObstacleSimulation();
if (obssimulation)
{
for ( i=0;i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->gameflag & OB_HASOBSTACLE)
{
obssimulation->AddObstacleForObj(gameobj);
}
}
}
//process navigation mesh objects
for ( i=0; i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->type==OB_MESH && (blenderobject->gameflag & OB_NAVMESH))
{
KX_NavMeshObject* navmesh = static_cast<KX_NavMeshObject*>(gameobj);
navmesh->SetVisible(0, true);
navmesh->BuildNavMesh();
if (obssimulation)
obssimulation->AddObstaclesForNavMesh(navmesh);
}
}
for ( i=0; i<inactivelist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(inactivelist->GetValue(i));
struct Object* blenderobject = gameobj->GetBlenderObject();
if (blenderobject->type==OB_MESH && (blenderobject->gameflag & OB_NAVMESH))
{
KX_NavMeshObject* navmesh = static_cast<KX_NavMeshObject*>(gameobj);
navmesh->SetVisible(0, true);
}
}
// convert logic bricks, sensors, controllers and actuators
for (i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertActuators(maggie->name, blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,layerMask,isInActiveLayer,converter);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertControllers(blenderobj,gameobj,logicmgr, layerMask,isInActiveLayer,converter, libloading);
}
for ( i=0;i<logicbrick_conversionlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(logicbrick_conversionlist->GetValue(i));
struct Object* blenderobj = gameobj->GetBlenderObject();
int layerMask = (groupobj.find(blenderobj) == groupobj.end()) ? activeLayerBitInfo : 0;
bool isInActiveLayer = (blenderobj->lay & layerMask)!=0;
BL_ConvertSensors(blenderobj,gameobj,logicmgr,kxscene,ketsjiEngine,layerMask,isInActiveLayer,canvas,converter);
// set the init state to all objects
gameobj->SetInitState((blenderobj->init_state)?blenderobj->init_state:blenderobj->state);
}
// apply the initial state to controllers, only on the active objects as this registers the sensors
for ( i=0;i<objectlist->GetCount();i++)
{
KX_GameObject* gameobj = static_cast<KX_GameObject*>(objectlist->GetValue(i));
gameobj->ResetState();
}
logicbrick_conversionlist->Release();
// Calculate the scene btree -
// too slow - commented out.
//kxscene->SetNodeTree(tf.MakeTree());
// instantiate dupli group, we will loop trough the object
// that are in active layers. Note that duplicating group
// has the effect of adding objects at the end of objectlist.
// Only loop through the first part of the list.
int objcount = objectlist->GetCount();
for (i=0;i<objcount;i++)
{
KX_GameObject* gameobj = (KX_GameObject*) objectlist->GetValue(i);
if (gameobj->IsDupliGroup())
{
kxscene->DupliGroupRecurse(gameobj, 0);
}
}
KX_Camera *activecam = kxscene->GetActiveCamera();
MT_Scalar distance = (activecam)? activecam->GetCameraFar() - activecam->GetCameraNear(): 100.0f;
RAS_BucketManager *bucketmanager = kxscene->GetBucketManager();
bucketmanager->OptimizeBuckets(distance);
}