3f2cb6e878
* removed macros that were not used much, some misleading. * removed error string setting calls that overwrote the error set by PyArg_ParseTuple with a less useful one. * use python macros Py_RETURN_NONE, Py_RETURN_TRUE, Py_RETURN_FALSE
640 lines
20 KiB
C++
640 lines
20 KiB
C++
/**
|
|
* Do translation/rotation actions
|
|
*
|
|
* $Id$
|
|
*
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "KX_ObjectActuator.h"
|
|
#include "KX_GameObject.h"
|
|
#include "KX_IPhysicsController.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Native functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
KX_ObjectActuator::
|
|
KX_ObjectActuator(
|
|
SCA_IObject* gameobj,
|
|
const MT_Vector3& force,
|
|
const MT_Vector3& torque,
|
|
const MT_Vector3& dloc,
|
|
const MT_Vector3& drot,
|
|
const MT_Vector3& linV,
|
|
const MT_Vector3& angV,
|
|
const short damping,
|
|
const KX_LocalFlags& flag,
|
|
PyTypeObject* T
|
|
) :
|
|
SCA_IActuator(gameobj,T),
|
|
m_force(force),
|
|
m_torque(torque),
|
|
m_dloc(dloc),
|
|
m_drot(drot),
|
|
m_linear_velocity(linV),
|
|
m_angular_velocity(angV),
|
|
m_linear_length2(0.0),
|
|
m_current_linear_factor(0.0),
|
|
m_current_angular_factor(0.0),
|
|
m_damping(damping),
|
|
m_bitLocalFlag (flag),
|
|
m_active_combined_velocity (false),
|
|
m_linear_damping_active(false),
|
|
m_angular_damping_active(false),
|
|
m_error_accumulator(0.0,0.0,0.0),
|
|
m_previous_error(0.0,0.0,0.0)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// in servo motion, the force is local if the target velocity is local
|
|
m_bitLocalFlag.Force = m_bitLocalFlag.LinearVelocity;
|
|
}
|
|
UpdateFuzzyFlags();
|
|
}
|
|
|
|
bool KX_ObjectActuator::Update()
|
|
{
|
|
|
|
bool bNegativeEvent = IsNegativeEvent();
|
|
RemoveAllEvents();
|
|
|
|
KX_GameObject *parent = static_cast<KX_GameObject *>(GetParent());
|
|
|
|
if (bNegativeEvent) {
|
|
// If we previously set the linear velocity we now have to inform
|
|
// the physics controller that we no longer wish to apply it and that
|
|
// it should reconcile the externally set velocity with it's
|
|
// own velocity.
|
|
if (m_active_combined_velocity) {
|
|
if (parent)
|
|
parent->ResolveCombinedVelocities(
|
|
m_linear_velocity,
|
|
m_angular_velocity,
|
|
(m_bitLocalFlag.LinearVelocity) != 0,
|
|
(m_bitLocalFlag.AngularVelocity) != 0
|
|
);
|
|
m_active_combined_velocity = false;
|
|
}
|
|
m_linear_damping_active = false;
|
|
m_angular_damping_active = false;
|
|
m_error_accumulator.setValue(0.0,0.0,0.0);
|
|
m_previous_error.setValue(0.0,0.0,0.0);
|
|
return false;
|
|
|
|
} else if (parent)
|
|
{
|
|
if (m_bitLocalFlag.ServoControl)
|
|
{
|
|
// In this mode, we try to reach a target speed using force
|
|
// As we don't know the friction, we must implement a generic
|
|
// servo control to achieve the speed in a configurable
|
|
// v = current velocity
|
|
// V = target velocity
|
|
// e = V-v = speed error
|
|
// dt = time interval since previous update
|
|
// I = sum(e(t)*dt)
|
|
// dv = e(t) - e(t-1)
|
|
// KP, KD, KI : coefficient
|
|
// F = KP*e+KI*I+KD*dv
|
|
MT_Scalar mass = parent->GetMass();
|
|
if (mass < MT_EPSILON)
|
|
return false;
|
|
MT_Vector3 v = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
MT_Vector3 e = m_linear_velocity - v;
|
|
MT_Vector3 dv = e - m_previous_error;
|
|
MT_Vector3 I = m_error_accumulator + e;
|
|
|
|
m_force = m_torque.x()*e+m_torque.y()*I+m_torque.z()*dv;
|
|
// to automatically adapt the PID coefficient to mass;
|
|
m_force *= mass;
|
|
if (m_bitLocalFlag.Torque)
|
|
{
|
|
if (m_force[0] > m_dloc[0])
|
|
{
|
|
m_force[0] = m_dloc[0];
|
|
I[0] = m_error_accumulator[0];
|
|
} else if (m_force[0] < m_drot[0])
|
|
{
|
|
m_force[0] = m_drot[0];
|
|
I[0] = m_error_accumulator[0];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DLoc)
|
|
{
|
|
if (m_force[1] > m_dloc[1])
|
|
{
|
|
m_force[1] = m_dloc[1];
|
|
I[1] = m_error_accumulator[1];
|
|
} else if (m_force[1] < m_drot[1])
|
|
{
|
|
m_force[1] = m_drot[1];
|
|
I[1] = m_error_accumulator[1];
|
|
}
|
|
}
|
|
if (m_bitLocalFlag.DRot)
|
|
{
|
|
if (m_force[2] > m_dloc[2])
|
|
{
|
|
m_force[2] = m_dloc[2];
|
|
I[2] = m_error_accumulator[2];
|
|
} else if (m_force[2] < m_drot[2])
|
|
{
|
|
m_force[2] = m_drot[2];
|
|
I[2] = m_error_accumulator[2];
|
|
}
|
|
}
|
|
m_previous_error = e;
|
|
m_error_accumulator = I;
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else
|
|
{
|
|
if (!m_bitLocalFlag.ZeroForce)
|
|
{
|
|
parent->ApplyForce(m_force,(m_bitLocalFlag.Force) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroTorque)
|
|
{
|
|
parent->ApplyTorque(m_torque,(m_bitLocalFlag.Torque) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDLoc)
|
|
{
|
|
parent->ApplyMovement(m_dloc,(m_bitLocalFlag.DLoc) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroDRot)
|
|
{
|
|
parent->ApplyRotation(m_drot,(m_bitLocalFlag.DRot) != 0);
|
|
}
|
|
if (!m_bitLocalFlag.ZeroLinearVelocity)
|
|
{
|
|
if (m_bitLocalFlag.AddOrSetLinV) {
|
|
parent->addLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 linV;
|
|
if (!m_linear_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
linV = parent->GetLinearVelocity(m_bitLocalFlag.LinearVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_linear_factor = linV.dot(m_linear_velocity)/m_linear_length2;
|
|
m_linear_damping_active = true;
|
|
}
|
|
if (m_current_linear_factor < 1.0)
|
|
m_current_linear_factor += 1.0/m_damping;
|
|
if (m_current_linear_factor > 1.0)
|
|
m_current_linear_factor = 1.0;
|
|
linV = m_current_linear_factor * m_linear_velocity;
|
|
parent->setLinearVelocity(linV,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
} else {
|
|
parent->setLinearVelocity(m_linear_velocity,(m_bitLocalFlag.LinearVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
if (!m_bitLocalFlag.ZeroAngularVelocity)
|
|
{
|
|
m_active_combined_velocity = true;
|
|
if (m_damping > 0) {
|
|
MT_Vector3 angV;
|
|
if (!m_angular_damping_active) {
|
|
// delta and the start speed (depends on the existing speed in that direction)
|
|
angV = parent->GetAngularVelocity(m_bitLocalFlag.AngularVelocity);
|
|
// keep only the projection along the desired direction
|
|
m_current_angular_factor = angV.dot(m_angular_velocity)/m_angular_length2;
|
|
m_angular_damping_active = true;
|
|
}
|
|
if (m_current_angular_factor < 1.0)
|
|
m_current_angular_factor += 1.0/m_damping;
|
|
if (m_current_angular_factor > 1.0)
|
|
m_current_angular_factor = 1.0;
|
|
angV = m_current_angular_factor * m_angular_velocity;
|
|
parent->setAngularVelocity(angV,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
} else {
|
|
parent->setAngularVelocity(m_angular_velocity,(m_bitLocalFlag.AngularVelocity) != 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
CValue* KX_ObjectActuator::GetReplica()
|
|
{
|
|
KX_ObjectActuator* replica = new KX_ObjectActuator(*this);//m_float,GetName());
|
|
replica->ProcessReplica();
|
|
|
|
// this will copy properties and so on...
|
|
CValue::AddDataToReplica(replica);
|
|
|
|
return replica;
|
|
}
|
|
|
|
|
|
|
|
/* some 'standard' utilities... */
|
|
bool KX_ObjectActuator::isValid(KX_ObjectActuator::KX_OBJECT_ACT_VEC_TYPE type)
|
|
{
|
|
bool res = false;
|
|
res = (type > KX_OBJECT_ACT_NODEF) && (type < KX_OBJECT_ACT_MAX);
|
|
return res;
|
|
}
|
|
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Python functions */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* Integration hooks ------------------------------------------------------- */
|
|
PyTypeObject KX_ObjectActuator::Type = {
|
|
PyObject_HEAD_INIT(&PyType_Type)
|
|
0,
|
|
"KX_ObjectActuator",
|
|
sizeof(KX_ObjectActuator),
|
|
0,
|
|
PyDestructor,
|
|
0,
|
|
__getattr,
|
|
__setattr,
|
|
0, //&MyPyCompare,
|
|
__repr,
|
|
0, //&cvalue_as_number,
|
|
0,
|
|
0,
|
|
0,
|
|
0
|
|
};
|
|
|
|
PyParentObject KX_ObjectActuator::Parents[] = {
|
|
&KX_ObjectActuator::Type,
|
|
&SCA_IActuator::Type,
|
|
&SCA_ILogicBrick::Type,
|
|
&CValue::Type,
|
|
NULL
|
|
};
|
|
|
|
PyMethodDef KX_ObjectActuator::Methods[] = {
|
|
{"getForce", (PyCFunction) KX_ObjectActuator::sPyGetForce, METH_NOARGS},
|
|
{"setForce", (PyCFunction) KX_ObjectActuator::sPySetForce, METH_VARARGS},
|
|
{"getTorque", (PyCFunction) KX_ObjectActuator::sPyGetTorque, METH_NOARGS},
|
|
{"setTorque", (PyCFunction) KX_ObjectActuator::sPySetTorque, METH_VARARGS},
|
|
{"getDLoc", (PyCFunction) KX_ObjectActuator::sPyGetDLoc, METH_NOARGS},
|
|
{"setDLoc", (PyCFunction) KX_ObjectActuator::sPySetDLoc, METH_VARARGS},
|
|
{"getDRot", (PyCFunction) KX_ObjectActuator::sPyGetDRot, METH_NOARGS},
|
|
{"setDRot", (PyCFunction) KX_ObjectActuator::sPySetDRot, METH_VARARGS},
|
|
{"getLinearVelocity", (PyCFunction) KX_ObjectActuator::sPyGetLinearVelocity, METH_NOARGS},
|
|
{"setLinearVelocity", (PyCFunction) KX_ObjectActuator::sPySetLinearVelocity, METH_VARARGS},
|
|
{"getAngularVelocity", (PyCFunction) KX_ObjectActuator::sPyGetAngularVelocity, METH_NOARGS},
|
|
{"setAngularVelocity", (PyCFunction) KX_ObjectActuator::sPySetAngularVelocity, METH_VARARGS},
|
|
{"setDamping", (PyCFunction) KX_ObjectActuator::sPySetDamping, METH_VARARGS},
|
|
{"getDamping", (PyCFunction) KX_ObjectActuator::sPyGetDamping, METH_NOARGS},
|
|
{"setForceLimitX", (PyCFunction) KX_ObjectActuator::sPySetForceLimitX, METH_VARARGS},
|
|
{"getForceLimitX", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitX, METH_NOARGS},
|
|
{"setForceLimitY", (PyCFunction) KX_ObjectActuator::sPySetForceLimitY, METH_VARARGS},
|
|
{"getForceLimitY", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitY, METH_NOARGS},
|
|
{"setForceLimitZ", (PyCFunction) KX_ObjectActuator::sPySetForceLimitZ, METH_VARARGS},
|
|
{"getForceLimitZ", (PyCFunction) KX_ObjectActuator::sPyGetForceLimitZ, METH_NOARGS},
|
|
{"setPID", (PyCFunction) KX_ObjectActuator::sPyGetPID, METH_NOARGS},
|
|
{"getPID", (PyCFunction) KX_ObjectActuator::sPySetPID, METH_VARARGS},
|
|
|
|
|
|
|
|
{NULL,NULL} //Sentinel
|
|
};
|
|
|
|
PyObject* KX_ObjectActuator::_getattr(const STR_String& attr) {
|
|
_getattr_up(SCA_IActuator);
|
|
};
|
|
|
|
/* 1. set ------------------------------------------------------------------ */
|
|
/* Removed! */
|
|
|
|
/* 2. getForce */
|
|
PyObject* KX_ObjectActuator::PyGetForce(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_force[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_force[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_force[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.Force));
|
|
|
|
return retVal;
|
|
}
|
|
/* 3. setForce */
|
|
PyObject* KX_ObjectActuator::PySetForce(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_force.setValue(vecArg);
|
|
m_bitLocalFlag.Force = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
/* 4. getTorque */
|
|
PyObject* KX_ObjectActuator::PyGetTorque(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_torque[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_torque[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_torque[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
/* 5. setTorque */
|
|
PyObject* KX_ObjectActuator::PySetTorque(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_torque.setValue(vecArg);
|
|
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
/* 6. getDLoc */
|
|
PyObject* KX_ObjectActuator::PyGetDLoc(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_dloc[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_dloc[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setDLoc */
|
|
PyObject* KX_ObjectActuator::PySetDLoc(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_dloc.setValue(vecArg);
|
|
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
/* 8. getDRot */
|
|
PyObject* KX_ObjectActuator::PyGetDRot(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_drot[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_drot[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
/* 9. setDRot */
|
|
PyObject* KX_ObjectActuator::PySetDRot(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot.setValue(vecArg);
|
|
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
/* 10. getLinearVelocity */
|
|
PyObject* KX_ObjectActuator::PyGetLinearVelocity(PyObject* self) {
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_linear_velocity[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_linear_velocity[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_linear_velocity[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.LinearVelocity));
|
|
|
|
return retVal;
|
|
}
|
|
|
|
/* 11. setLinearVelocity */
|
|
PyObject* KX_ObjectActuator::PySetLinearVelocity(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_linear_velocity.setValue(vecArg);
|
|
m_bitLocalFlag.LinearVelocity = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
|
|
/* 12. getAngularVelocity */
|
|
PyObject* KX_ObjectActuator::PyGetAngularVelocity(PyObject* self) {
|
|
PyObject *retVal = PyList_New(4);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_angular_velocity[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_angular_velocity[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_angular_velocity[2]));
|
|
PyList_SetItem(retVal, 3, BoolToPyArg(m_bitLocalFlag.AngularVelocity));
|
|
|
|
return retVal;
|
|
}
|
|
/* 13. setAngularVelocity */
|
|
PyObject* KX_ObjectActuator::PySetAngularVelocity(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
float vecArg[3];
|
|
int bToggle = 0;
|
|
if (!PyArg_ParseTuple(args, "fffi", &vecArg[0], &vecArg[1],
|
|
&vecArg[2], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_angular_velocity.setValue(vecArg);
|
|
m_bitLocalFlag.AngularVelocity = PyArgToBool(bToggle);
|
|
UpdateFuzzyFlags();
|
|
Py_Return;
|
|
}
|
|
|
|
/* 13. setDamping */
|
|
PyObject* KX_ObjectActuator::PySetDamping(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds) {
|
|
int damping = 0;
|
|
if (!PyArg_ParseTuple(args, "i", &damping) || damping < 0 || damping > 1000) {
|
|
return NULL;
|
|
}
|
|
m_damping = damping;
|
|
Py_Return;
|
|
}
|
|
|
|
/* 13. getVelocityDamping */
|
|
PyObject* KX_ObjectActuator::PyGetDamping(PyObject* self) {
|
|
return Py_BuildValue("i",m_damping);
|
|
}
|
|
/* 6. getForceLimitX */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitX(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[0]));
|
|
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.Torque));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitX */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitX(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[0] = vecArg[0];
|
|
m_dloc[0] = vecArg[1];
|
|
m_bitLocalFlag.Torque = PyArgToBool(bToggle);
|
|
Py_Return;
|
|
}
|
|
|
|
/* 6. getForceLimitY */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitY(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[1]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[1]));
|
|
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.DLoc));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitY */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitY(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[1] = vecArg[0];
|
|
m_dloc[1] = vecArg[1];
|
|
m_bitLocalFlag.DLoc = PyArgToBool(bToggle);
|
|
Py_Return;
|
|
}
|
|
|
|
/* 6. getForceLimitZ */
|
|
PyObject* KX_ObjectActuator::PyGetForceLimitZ(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_drot[2]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_dloc[2]));
|
|
PyList_SetItem(retVal, 2, BoolToPyArg(m_bitLocalFlag.DRot));
|
|
|
|
return retVal;
|
|
}
|
|
/* 7. setForceLimitZ */
|
|
PyObject* KX_ObjectActuator::PySetForceLimitZ(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[2];
|
|
int bToggle = 0;
|
|
if(!PyArg_ParseTuple(args, "ffi", &vecArg[0], &vecArg[1], &bToggle)) {
|
|
return NULL;
|
|
}
|
|
m_drot[2] = vecArg[0];
|
|
m_dloc[2] = vecArg[1];
|
|
m_bitLocalFlag.DRot = PyArgToBool(bToggle);
|
|
Py_Return;
|
|
}
|
|
|
|
/* 4. getPID */
|
|
PyObject* KX_ObjectActuator::PyGetPID(PyObject* self)
|
|
{
|
|
PyObject *retVal = PyList_New(3);
|
|
|
|
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_torque[0]));
|
|
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_torque[1]));
|
|
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_torque[2]));
|
|
|
|
return retVal;
|
|
}
|
|
/* 5. setPID */
|
|
PyObject* KX_ObjectActuator::PySetPID(PyObject* self,
|
|
PyObject* args,
|
|
PyObject* kwds)
|
|
{
|
|
float vecArg[3];
|
|
if (!PyArg_ParseTuple(args, "fff", &vecArg[0], &vecArg[1], &vecArg[2])) {
|
|
return NULL;
|
|
}
|
|
m_torque.setValue(vecArg);
|
|
Py_Return;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* eof */
|