blender/intern/cycles/kernel/geom/object.h
Ethan-Hall 5b4ab89663 Shader Nodes: add Alpha output to Object Info node
An alpha component can be specified for an object's color. This adds an alpha
socket to the object info shader node allowing for the alpha component of the
object's color to be accessed in the shader editor.

Differential Revision: https://developer.blender.org/D14141
2022-03-07 17:35:48 +01:00

600 lines
19 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
/* Object Primitive
*
* All mesh and curve primitives are part of an object. The same mesh and curves
* may be instanced multiple times by different objects.
*
* If the mesh is not instanced multiple times, the object will not be explicitly
* stored as a primitive in the BVH, rather the bare triangles are curved are
* directly primitives in the BVH with world space locations applied, and the object
* ID is looked up afterwards. */
#pragma once
CCL_NAMESPACE_BEGIN
/* Object attributes, for now a fixed size and contents */
enum ObjectTransform {
OBJECT_TRANSFORM = 0,
OBJECT_INVERSE_TRANSFORM = 1,
};
enum ObjectVectorTransform { OBJECT_PASS_MOTION_PRE = 0, OBJECT_PASS_MOTION_POST = 1 };
/* Object to world space transformation */
ccl_device_inline Transform object_fetch_transform(KernelGlobals kg,
int object,
enum ObjectTransform type)
{
if (type == OBJECT_INVERSE_TRANSFORM) {
return kernel_tex_fetch(__objects, object).itfm;
}
else {
return kernel_tex_fetch(__objects, object).tfm;
}
}
/* Lamp to world space transformation */
ccl_device_inline Transform lamp_fetch_transform(KernelGlobals kg, int lamp, bool inverse)
{
if (inverse) {
return kernel_tex_fetch(__lights, lamp).itfm;
}
else {
return kernel_tex_fetch(__lights, lamp).tfm;
}
}
/* Object to world space transformation for motion vectors */
ccl_device_inline Transform object_fetch_motion_pass_transform(KernelGlobals kg,
int object,
enum ObjectVectorTransform type)
{
int offset = object * OBJECT_MOTION_PASS_SIZE + (int)type;
return kernel_tex_fetch(__object_motion_pass, offset);
}
/* Motion blurred object transformations */
#ifdef __OBJECT_MOTION__
ccl_device_inline Transform object_fetch_transform_motion(KernelGlobals kg, int object, float time)
{
const uint motion_offset = kernel_tex_fetch(__objects, object).motion_offset;
ccl_global const DecomposedTransform *motion = &kernel_tex_fetch(__object_motion, motion_offset);
const uint num_steps = kernel_tex_fetch(__objects, object).numsteps * 2 + 1;
Transform tfm;
transform_motion_array_interpolate(&tfm, motion, num_steps, time);
return tfm;
}
ccl_device_inline Transform object_fetch_transform_motion_test(KernelGlobals kg,
int object,
float time,
ccl_private Transform *itfm)
{
int object_flag = kernel_tex_fetch(__object_flag, object);
if (object_flag & SD_OBJECT_MOTION) {
/* if we do motion blur */
Transform tfm = object_fetch_transform_motion(kg, object, time);
if (itfm)
*itfm = transform_quick_inverse(tfm);
return tfm;
}
else {
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
if (itfm)
*itfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
return tfm;
}
}
#endif
/* Get transform matrix for shading point. */
ccl_device_inline Transform object_get_transform(KernelGlobals kg,
ccl_private const ShaderData *sd)
{
#ifdef __OBJECT_MOTION__
return (sd->object_flag & SD_OBJECT_MOTION) ?
sd->ob_tfm_motion :
object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
#else
return object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
#endif
}
ccl_device_inline Transform object_get_inverse_transform(KernelGlobals kg,
ccl_private const ShaderData *sd)
{
#ifdef __OBJECT_MOTION__
return (sd->object_flag & SD_OBJECT_MOTION) ?
sd->ob_itfm_motion :
object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
#else
return object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
#endif
}
/* Transform position from object to world space */
ccl_device_inline void object_position_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *P)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
*P = transform_point_auto(&sd->ob_tfm_motion, *P);
return;
}
#endif
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*P = transform_point(&tfm, *P);
}
/* Transform position from world to object space */
ccl_device_inline void object_inverse_position_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *P)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
*P = transform_point_auto(&sd->ob_itfm_motion, *P);
return;
}
#endif
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, *P);
}
/* Transform normal from world to object space */
ccl_device_inline void object_inverse_normal_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *N)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
if ((sd->object != OBJECT_NONE) || (sd->type == PRIMITIVE_LAMP)) {
*N = normalize(transform_direction_transposed_auto(&sd->ob_tfm_motion, *N));
}
return;
}
#endif
if (sd->object != OBJECT_NONE) {
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
}
else if (sd->type == PRIMITIVE_LAMP) {
Transform tfm = lamp_fetch_transform(kg, sd->lamp, false);
*N = normalize(transform_direction_transposed(&tfm, *N));
}
}
/* Transform normal from object to world space */
ccl_device_inline void object_normal_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *N)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
*N = normalize(transform_direction_transposed_auto(&sd->ob_itfm_motion, *N));
return;
}
#endif
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*N = normalize(transform_direction_transposed(&tfm, *N));
}
/* Transform direction vector from object to world space */
ccl_device_inline void object_dir_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *D)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
*D = transform_direction_auto(&sd->ob_tfm_motion, *D);
return;
}
#endif
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
*D = transform_direction(&tfm, *D);
}
/* Transform direction vector from world to object space */
ccl_device_inline void object_inverse_dir_transform(KernelGlobals kg,
ccl_private const ShaderData *sd,
ccl_private float3 *D)
{
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
*D = transform_direction_auto(&sd->ob_itfm_motion, *D);
return;
}
#endif
const Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_INVERSE_TRANSFORM);
*D = transform_direction(&tfm, *D);
}
/* Object center position */
ccl_device_inline float3 object_location(KernelGlobals kg, ccl_private const ShaderData *sd)
{
if (sd->object == OBJECT_NONE)
return make_float3(0.0f, 0.0f, 0.0f);
#ifdef __OBJECT_MOTION__
if (sd->object_flag & SD_OBJECT_MOTION) {
return make_float3(sd->ob_tfm_motion.x.w, sd->ob_tfm_motion.y.w, sd->ob_tfm_motion.z.w);
}
#endif
Transform tfm = object_fetch_transform(kg, sd->object, OBJECT_TRANSFORM);
return make_float3(tfm.x.w, tfm.y.w, tfm.z.w);
}
/* Color of the object */
ccl_device_inline float3 object_color(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return make_float3(0.0f, 0.0f, 0.0f);
ccl_global const KernelObject *kobject = &kernel_tex_fetch(__objects, object);
return make_float3(kobject->color[0], kobject->color[1], kobject->color[2]);
}
/* Alpha of the object */
ccl_device_inline float object_alpha(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0.0f;
return kernel_tex_fetch(__objects, object).alpha;
}
/* Pass ID number of object */
ccl_device_inline float object_pass_id(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0.0f;
return kernel_tex_fetch(__objects, object).pass_id;
}
/* Per lamp random number for shader variation */
ccl_device_inline float lamp_random_number(KernelGlobals kg, int lamp)
{
if (lamp == LAMP_NONE)
return 0.0f;
return kernel_tex_fetch(__lights, lamp).random;
}
/* Per object random number for shader variation */
ccl_device_inline float object_random_number(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0.0f;
return kernel_tex_fetch(__objects, object).random_number;
}
/* Particle ID from which this object was generated */
ccl_device_inline int object_particle_id(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0;
return kernel_tex_fetch(__objects, object).particle_index;
}
/* Generated texture coordinate on surface from where object was instanced */
ccl_device_inline float3 object_dupli_generated(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return make_float3(0.0f, 0.0f, 0.0f);
ccl_global const KernelObject *kobject = &kernel_tex_fetch(__objects, object);
return make_float3(
kobject->dupli_generated[0], kobject->dupli_generated[1], kobject->dupli_generated[2]);
}
/* UV texture coordinate on surface from where object was instanced */
ccl_device_inline float3 object_dupli_uv(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return make_float3(0.0f, 0.0f, 0.0f);
ccl_global const KernelObject *kobject = &kernel_tex_fetch(__objects, object);
return make_float3(kobject->dupli_uv[0], kobject->dupli_uv[1], 0.0f);
}
/* Information about mesh for motion blurred triangles and curves */
ccl_device_inline void object_motion_info(KernelGlobals kg,
int object,
ccl_private int *numsteps,
ccl_private int *numverts,
ccl_private int *numkeys)
{
if (numkeys) {
*numkeys = kernel_tex_fetch(__objects, object).numkeys;
}
if (numsteps)
*numsteps = kernel_tex_fetch(__objects, object).numsteps;
if (numverts)
*numverts = kernel_tex_fetch(__objects, object).numverts;
}
/* Offset to an objects patch map */
ccl_device_inline uint object_patch_map_offset(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0;
return kernel_tex_fetch(__objects, object).patch_map_offset;
}
/* Volume step size */
ccl_device_inline float object_volume_density(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE) {
return 1.0f;
}
return kernel_tex_fetch(__objects, object).volume_density;
}
ccl_device_inline float object_volume_step_size(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE) {
return kernel_data.background.volume_step_size;
}
return kernel_tex_fetch(__object_volume_step, object);
}
/* Pass ID for shader */
ccl_device int shader_pass_id(KernelGlobals kg, ccl_private const ShaderData *sd)
{
return kernel_tex_fetch(__shaders, (sd->shader & SHADER_MASK)).pass_id;
}
/* Cryptomatte ID */
ccl_device_inline float object_cryptomatte_id(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0.0f;
return kernel_tex_fetch(__objects, object).cryptomatte_object;
}
ccl_device_inline float object_cryptomatte_asset_id(KernelGlobals kg, int object)
{
if (object == OBJECT_NONE)
return 0;
return kernel_tex_fetch(__objects, object).cryptomatte_asset;
}
/* Particle data from which object was instanced */
ccl_device_inline uint particle_index(KernelGlobals kg, int particle)
{
return kernel_tex_fetch(__particles, particle).index;
}
ccl_device float particle_age(KernelGlobals kg, int particle)
{
return kernel_tex_fetch(__particles, particle).age;
}
ccl_device float particle_lifetime(KernelGlobals kg, int particle)
{
return kernel_tex_fetch(__particles, particle).lifetime;
}
ccl_device float particle_size(KernelGlobals kg, int particle)
{
return kernel_tex_fetch(__particles, particle).size;
}
ccl_device float4 particle_rotation(KernelGlobals kg, int particle)
{
return kernel_tex_fetch(__particles, particle).rotation;
}
ccl_device float3 particle_location(KernelGlobals kg, int particle)
{
return float4_to_float3(kernel_tex_fetch(__particles, particle).location);
}
ccl_device float3 particle_velocity(KernelGlobals kg, int particle)
{
return float4_to_float3(kernel_tex_fetch(__particles, particle).velocity);
}
ccl_device float3 particle_angular_velocity(KernelGlobals kg, int particle)
{
return float4_to_float3(kernel_tex_fetch(__particles, particle).angular_velocity);
}
/* Object intersection in BVH */
ccl_device_inline float3 bvh_clamp_direction(float3 dir)
{
const float ooeps = 8.271806E-25f;
return make_float3((fabsf(dir.x) > ooeps) ? dir.x : copysignf(ooeps, dir.x),
(fabsf(dir.y) > ooeps) ? dir.y : copysignf(ooeps, dir.y),
(fabsf(dir.z) > ooeps) ? dir.z : copysignf(ooeps, dir.z));
}
ccl_device_inline float3 bvh_inverse_direction(float3 dir)
{
return rcp(dir);
}
/* Transform ray into object space to enter static object in BVH */
ccl_device_inline float bvh_instance_push(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, ray->P);
float len;
*dir = bvh_clamp_direction(normalize_len(transform_direction(&tfm, ray->D), &len));
*idir = bvh_inverse_direction(*dir);
return len;
}
/* Transform ray to exit static object in BVH. */
ccl_device_inline float bvh_instance_pop(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir,
float t)
{
if (t != FLT_MAX) {
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
t /= len(transform_direction(&tfm, ray->D));
}
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
return t;
}
/* Same as above, but returns scale factor to apply to multiple intersection distances */
ccl_device_inline void bvh_instance_pop_factor(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir,
ccl_private float *t_fac)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
*t_fac = 1.0f / len(transform_direction(&tfm, ray->D));
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
}
#ifdef __OBJECT_MOTION__
/* Transform ray into object space to enter motion blurred object in BVH */
ccl_device_inline float bvh_instance_motion_push(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir,
ccl_private Transform *itfm)
{
object_fetch_transform_motion_test(kg, object, ray->time, itfm);
*P = transform_point(itfm, ray->P);
float len;
*dir = bvh_clamp_direction(normalize_len(transform_direction(itfm, ray->D), &len));
*idir = bvh_inverse_direction(*dir);
return len;
}
/* Transform ray to exit motion blurred object in BVH. */
ccl_device_inline float bvh_instance_motion_pop(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir,
float t,
ccl_private Transform *itfm)
{
if (t != FLT_MAX) {
t /= len(transform_direction(itfm, ray->D));
}
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
return t;
}
/* Same as above, but returns scale factor to apply to multiple intersection distances */
ccl_device_inline void bvh_instance_motion_pop_factor(KernelGlobals kg,
int object,
ccl_private const Ray *ray,
ccl_private float3 *P,
ccl_private float3 *dir,
ccl_private float3 *idir,
ccl_private float *t_fac,
ccl_private Transform *itfm)
{
*t_fac = 1.0f / len(transform_direction(itfm, ray->D));
*P = ray->P;
*dir = bvh_clamp_direction(ray->D);
*idir = bvh_inverse_direction(*dir);
}
#endif
/* TODO: This can be removed when we know if no devices will require explicit
* address space qualifiers for this case. */
#define object_position_transform_auto object_position_transform
#define object_dir_transform_auto object_dir_transform
#define object_normal_transform_auto object_normal_transform
CCL_NAMESPACE_END