blender/source/gameengine/Ketsji/KX_Camera.cpp
Benoit Bolsee 566053319a fix BGE bug #8309: After Parent Object added to the visual layer, Child Camera won't follow.
This bug fix is made of two parts:
1) It's now possible to dynamically add a camera.
2) Empty camera name on a SetCamera actuator now points to the actuator's parent object if this object is a camera. 
This trick is useful to make current a dynamically created camera: just add a SetCamera actuator on the camera itself and leave the name empty. Later, when the camera is added in the scene with an AddObject actuator, either directly or via a parent object, you just need to activate the actuator to make the newly created camera current. If you set a name on a SetCamera actuator, it will always point to the original camera, even after replication.
2008-04-14 20:54:20 +00:00

793 lines
19 KiB
C++

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
* Camera in the gameengine. Cameras are also used for views.
*/
#include "KX_Camera.h"
#include "KX_Scene.h"
#include "KX_PythonInit.h"
#include "KX_Python.h"
#include "KX_PyMath.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
KX_Camera::KX_Camera(void* sgReplicationInfo,
SG_Callbacks callbacks,
const RAS_CameraData& camdata,
bool frustum_culling,
PyTypeObject *T)
:
KX_GameObject(sgReplicationInfo,callbacks,T),
m_camdata(camdata),
m_dirty(true),
m_normalized(false),
m_frustum_culling(frustum_culling && camdata.m_perspective),
m_set_projection_matrix(false),
m_set_frustum_center(false)
{
// setting a name would be nice...
m_name = "cam";
m_projection_matrix.setIdentity();
m_modelview_matrix.setIdentity();
CValue* val = new CIntValue(1);
SetProperty("camera",val);
val->Release();
}
KX_Camera::~KX_Camera()
{
}
CValue* KX_Camera::GetReplica()
{
KX_Camera* replica = new KX_Camera(*this);
// this will copy properties and so on...
CValue::AddDataToReplica(replica);
ProcessReplica(replica);
return replica;
}
void KX_Camera::ProcessReplica(KX_Camera* replica)
{
KX_GameObject::ProcessReplica(replica);
}
MT_Transform KX_Camera::GetWorldToCamera() const
{
MT_Transform camtrans;
camtrans.invert(MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation()));
return camtrans;
}
MT_Transform KX_Camera::GetCameraToWorld() const
{
return MT_Transform(NodeGetWorldPosition(), NodeGetWorldOrientation());
}
void KX_Camera::CorrectLookUp(MT_Scalar speed)
{
}
const MT_Point3 KX_Camera::GetCameraLocation() const
{
/* this is the camera locatio in cam coords... */
//return m_trans1.getOrigin();
//return MT_Point3(0,0,0); <-----
/* .... I want it in world coords */
//MT_Transform trans;
//trans.setBasis(NodeGetWorldOrientation());
return NodeGetWorldPosition();
}
/* I want the camera orientation as well. */
const MT_Quaternion KX_Camera::GetCameraOrientation() const
{
return NodeGetWorldOrientation().getRotation();
}
/**
* Sets the projection matrix that is used by the rasterizer.
*/
void KX_Camera::SetProjectionMatrix(const MT_Matrix4x4 & mat)
{
m_projection_matrix = mat;
m_dirty = true;
m_set_projection_matrix = true;
m_set_frustum_center = false;
}
/**
* Sets the modelview matrix that is used by the rasterizer.
*/
void KX_Camera::SetModelviewMatrix(const MT_Matrix4x4 & mat)
{
m_modelview_matrix = mat;
m_dirty = true;
m_set_frustum_center = false;
}
/**
* Gets the projection matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetProjectionMatrix() const
{
return m_projection_matrix;
}
/**
* Gets the modelview matrix that is used by the rasterizer.
*/
const MT_Matrix4x4& KX_Camera::GetModelviewMatrix() const
{
return m_modelview_matrix;
}
bool KX_Camera::hasValidProjectionMatrix() const
{
return m_set_projection_matrix;
}
void KX_Camera::InvalidateProjectionMatrix(bool valid)
{
m_set_projection_matrix = valid;
}
/*
* These getters retrieve the clip data and the focal length
*/
float KX_Camera::GetLens() const
{
return m_camdata.m_lens;
}
float KX_Camera::GetCameraNear() const
{
return m_camdata.m_clipstart;
}
float KX_Camera::GetCameraFar() const
{
return m_camdata.m_clipend;
}
RAS_CameraData* KX_Camera::GetCameraData()
{
return &m_camdata;
}
void KX_Camera::ExtractClipPlanes()
{
if (!m_dirty)
return;
MT_Matrix4x4 m = m_projection_matrix * m_modelview_matrix;
// Left clip plane
m_planes[0] = m[3] + m[0];
// Right clip plane
m_planes[1] = m[3] - m[0];
// Top clip plane
m_planes[2] = m[3] - m[1];
// Bottom clip plane
m_planes[3] = m[3] + m[1];
// Near clip plane
m_planes[4] = m[3] + m[2];
// Far clip plane
m_planes[5] = m[3] - m[2];
m_dirty = false;
m_normalized = false;
}
void KX_Camera::NormalizeClipPlanes()
{
if (m_normalized)
return;
for (unsigned int p = 0; p < 6; p++)
{
MT_Scalar factor = sqrt(m_planes[p][0]*m_planes[p][0] + m_planes[p][1]*m_planes[p][1] + m_planes[p][2]*m_planes[p][2]);
if (!MT_fuzzyZero(factor))
m_planes[p] /= factor;
}
m_normalized = true;
}
void KX_Camera::ExtractFrustumSphere()
{
if (m_set_frustum_center)
return;
// The most extreme points on the near and far plane. (normalized device coords)
MT_Vector4 hnear(1., 1., 0., 1.), hfar(1., 1., 1., 1.);
MT_Matrix4x4 clip_camcs_matrix = m_projection_matrix;
clip_camcs_matrix.invert();
// Transform to hom camera local space
hnear = clip_camcs_matrix*hnear;
hfar = clip_camcs_matrix*hfar;
// Tranform to 3d camera local space.
MT_Point3 nearpoint(hnear[0]/hnear[3], hnear[1]/hnear[3], hnear[2]/hnear[3]);
MT_Point3 farpoint(hfar[0]/hfar[3], hfar[1]/hfar[3], hfar[2]/hfar[3]);
// Compute center
m_frustum_center = MT_Point3(0., 0.,
(nearpoint.dot(nearpoint) - farpoint.dot(farpoint))/(2.0*(m_camdata.m_clipend - m_camdata.m_clipstart)));
m_frustum_radius = m_frustum_center.distance(farpoint);
// Transform to world space.
m_frustum_center = GetCameraToWorld()(m_frustum_center);
m_frustum_radius /= fabs(NodeGetWorldScaling()[NodeGetWorldScaling().closestAxis()]);
m_set_frustum_center = true;
}
bool KX_Camera::PointInsideFrustum(const MT_Point3& x)
{
ExtractClipPlanes();
for( unsigned int i = 0; i < 6 ; i++ )
{
if (m_planes[i][0]*x[0] + m_planes[i][1]*x[1] + m_planes[i][2]*x[2] + m_planes[i][3] < 0.)
return false;
}
return true;
}
int KX_Camera::BoxInsideFrustum(const MT_Point3 *box)
{
ExtractClipPlanes();
unsigned int insideCount = 0;
// 6 view frustum planes
for( unsigned int p = 0; p < 6 ; p++ )
{
unsigned int behindCount = 0;
// 8 box verticies.
for (unsigned int v = 0; v < 8 ; v++)
{
if (m_planes[p][0]*box[v][0] + m_planes[p][1]*box[v][1] + m_planes[p][2]*box[v][2] + m_planes[p][3] < 0.)
behindCount++;
}
// 8 points behind this plane
if (behindCount == 8)
return OUTSIDE;
// Every box vertex is on the front side of this plane
if (!behindCount)
insideCount++;
}
// All box verticies are on the front side of all frustum planes.
if (insideCount == 6)
return INSIDE;
return INTERSECT;
}
int KX_Camera::SphereInsideFrustum(const MT_Point3& center, const MT_Scalar &radius)
{
ExtractFrustumSphere();
if (center.distance2(m_frustum_center) > (radius + m_frustum_radius)*(radius + m_frustum_radius))
return OUTSIDE;
unsigned int p;
ExtractClipPlanes();
NormalizeClipPlanes();
MT_Scalar distance;
int intersect = INSIDE;
// distance: <-------- OUTSIDE -----|----- INTERSECT -----0----- INTERSECT -----|----- INSIDE -------->
// -radius radius
for (p = 0; p < 6; p++)
{
distance = m_planes[p][0]*center[0] + m_planes[p][1]*center[1] + m_planes[p][2]*center[2] + m_planes[p][3];
if (fabs(distance) <= radius)
intersect = INTERSECT;
else if (distance < -radius)
return OUTSIDE;
}
return intersect;
}
bool KX_Camera::GetFrustumCulling() const
{
return m_frustum_culling;
}
void KX_Camera::EnableViewport(bool viewport)
{
m_camdata.m_viewport = viewport;
}
void KX_Camera::SetViewport(int left, int bottom, int right, int top)
{
m_camdata.m_viewportleft = left;
m_camdata.m_viewportbottom = bottom;
m_camdata.m_viewportright = right;
m_camdata.m_viewporttop = top;
}
bool KX_Camera::GetViewport() const
{
return m_camdata.m_viewport;
}
int KX_Camera::GetViewportLeft() const
{
return m_camdata.m_viewportleft;
}
int KX_Camera::GetViewportBottom() const
{
return m_camdata.m_viewportbottom;
}
int KX_Camera::GetViewportRight() const
{
return m_camdata.m_viewportright;
}
int KX_Camera::GetViewportTop() const
{
return m_camdata.m_viewporttop;
}
//----------------------------------------------------------------------------
//Python
PyMethodDef KX_Camera::Methods[] = {
KX_PYMETHODTABLE(KX_Camera, sphereInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, boxInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, pointInsideFrustum),
KX_PYMETHODTABLE(KX_Camera, getCameraToWorld),
KX_PYMETHODTABLE(KX_Camera, getWorldToCamera),
KX_PYMETHODTABLE(KX_Camera, getProjectionMatrix),
KX_PYMETHODTABLE(KX_Camera, setProjectionMatrix),
KX_PYMETHODTABLE(KX_Camera, enableViewport),
KX_PYMETHODTABLE(KX_Camera, setViewport),
KX_PYMETHODTABLE(KX_Camera, setOnTop),
{NULL,NULL} //Sentinel
};
char KX_Camera::doc[] = "Module KX_Camera\n\n"
"Constants:\n"
"\tINSIDE\n"
"\tINTERSECT\n"
"\tOUTSIDE\n"
"Attributes:\n"
"\tlens -> float\n"
"\t\tThe camera's lens value\n"
"\tnear -> float\n"
"\t\tThe camera's near clip distance\n"
"\tfar -> float\n"
"\t\tThe camera's far clip distance\n"
"\tfrustum_culling -> bool\n"
"\t\tNon zero if this camera is frustum culling.\n"
"\tprojection_matrix -> [[float]]\n"
"\t\tThis camera's projection matrix.\n"
"\tmodelview_matrix -> [[float]] (read only)\n"
"\t\tThis camera's model view matrix.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\tcamera_to_world -> [[float]] (read only)\n"
"\t\tThis camera's camera to world transform.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\tworld_to_camera -> [[float]] (read only)\n"
"\t\tThis camera's world to camera transform.\n"
"\t\tRegenerated every frame from the camera's position and orientation.\n"
"\t\tThis is camera_to_world inverted.\n";
PyTypeObject KX_Camera::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_Camera",
sizeof(KX_Camera),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0, 0, 0, 0, 0, 0,
doc
};
PyParentObject KX_Camera::Parents[] = {
&KX_Camera::Type,
&KX_GameObject::Type,
&SCA_IObject::Type,
&CValue::Type,
NULL
};
PyObject* KX_Camera::_getattr(const STR_String& attr)
{
if (attr == "INSIDE")
return PyInt_FromLong(INSIDE); /* new ref */
if (attr == "OUTSIDE")
return PyInt_FromLong(OUTSIDE); /* new ref */
if (attr == "INTERSECT")
return PyInt_FromLong(INTERSECT); /* new ref */
if (attr == "lens")
return PyFloat_FromDouble(GetLens()); /* new ref */
if (attr == "near")
return PyFloat_FromDouble(GetCameraNear()); /* new ref */
if (attr == "far")
return PyFloat_FromDouble(GetCameraFar()); /* new ref */
if (attr == "frustum_culling")
return PyInt_FromLong(m_frustum_culling); /* new ref */
if (attr == "perspective")
return PyInt_FromLong(m_camdata.m_perspective); /* new ref */
if (attr == "projection_matrix")
return PyObjectFrom(GetProjectionMatrix()); /* new ref */
if (attr == "modelview_matrix")
return PyObjectFrom(GetModelviewMatrix()); /* new ref */
if (attr == "camera_to_world")
return PyObjectFrom(GetCameraToWorld()); /* new ref */
if (attr == "world_to_camera")
return PyObjectFrom(GetWorldToCamera()); /* new ref */
_getattr_up(KX_GameObject);
}
int KX_Camera::_setattr(const STR_String &attr, PyObject *pyvalue)
{
if (PyInt_Check(pyvalue))
{
if (attr == "frustum_culling")
{
m_frustum_culling = PyInt_AsLong(pyvalue);
return 0;
}
if (attr == "perspective")
{
m_camdata.m_perspective = PyInt_AsLong(pyvalue);
return 0;
}
}
if (PyFloat_Check(pyvalue))
{
if (attr == "lens")
{
m_camdata.m_lens = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
if (attr == "near")
{
m_camdata.m_clipstart = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
if (attr == "far")
{
m_camdata.m_clipend = PyFloat_AsDouble(pyvalue);
m_set_projection_matrix = false;
return 0;
}
}
if (PyObject_IsMT_Matrix(pyvalue, 4))
{
if (attr == "projection_matrix")
{
MT_Matrix4x4 mat;
if (PyMatTo(pyvalue, mat))
{
SetProjectionMatrix(mat);
return 0;
}
return 1;
}
}
return KX_GameObject::_setattr(attr, pyvalue);
}
KX_PYMETHODDEF_DOC(KX_Camera, sphereInsideFrustum,
"sphereInsideFrustum(center, radius) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given sphere is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tcenter = the center of the sphere (in world coordinates.)\n"
"\tradius = the radius of the sphere\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# A sphere of radius 4.0 located at [x, y, z] = [1.0, 1.0, 1.0]\n"
"\tif (cam.sphereInsideFrustum([1.0, 1.0, 1.0], 4) != cam.OUTSIDE):\n"
"\t\t# Sphere is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Sphere is outside frustum\n"
)
{
PyObject *pycenter;
float radius;
if (PyArg_ParseTuple(args, "Of", &pycenter, &radius))
{
MT_Point3 center;
if (PyVecTo(pycenter, center))
{
return PyInt_FromLong(SphereInsideFrustum(center, radius)); /* new ref */
}
}
PyErr_SetString(PyExc_TypeError, "sphereInsideFrustum: Expected arguments: (center, radius)");
Py_Return;
}
KX_PYMETHODDEF_DOC(KX_Camera, boxInsideFrustum,
"boxInsideFrustum(box) -> Integer\n"
"\treturns INSIDE, OUTSIDE or INTERSECT if the given box is\n"
"\tinside/outside/intersects this camera's viewing frustum.\n\n"
"\tbox = a list of the eight (8) corners of the box (in world coordinates.)\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\tbox = []\n"
"\tbox.append([-1.0, -1.0, -1.0])\n"
"\tbox.append([-1.0, -1.0, 1.0])\n"
"\tbox.append([-1.0, 1.0, -1.0])\n"
"\tbox.append([-1.0, 1.0, 1.0])\n"
"\tbox.append([ 1.0, -1.0, -1.0])\n"
"\tbox.append([ 1.0, -1.0, 1.0])\n"
"\tbox.append([ 1.0, 1.0, -1.0])\n"
"\tbox.append([ 1.0, 1.0, 1.0])\n\n"
"\tif (cam.boxInsideFrustum(box) != cam.OUTSIDE):\n"
"\t\t# Box is inside/intersects frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
PyObject *pybox;
if (PyArg_ParseTuple(args, "O", &pybox))
{
unsigned int num_points = PySequence_Size(pybox);
if (num_points != 8)
{
PyErr_Format(PyExc_TypeError, "boxInsideFrustum: Expected eight (8) points, got %d", num_points);
return NULL;
}
MT_Point3 box[8];
for (unsigned int p = 0; p < 8 ; p++)
{
PyObject *item = PySequence_GetItem(pybox, p); /* new ref */
bool error = !PyVecTo(item, box[p]);
Py_DECREF(item);
if (error)
return NULL;
}
return PyInt_FromLong(BoxInsideFrustum(box)); /* new ref */
}
PyErr_SetString(PyExc_TypeError, "boxInsideFrustum: Expected argument: list of points.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, pointInsideFrustum,
"pointInsideFrustum(point) -> Bool\n"
"\treturns 1 if the given point is inside this camera's viewing frustum.\n\n"
"\tpoint = The point to test (in world coordinates.)\n\n"
"\tExample:\n"
"\timport GameLogic\n\n"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.GetOwner()\n\n"
"\t# Test point [0.0, 0.0, 0.0]"
"\tif (cam.pointInsideFrustum([0.0, 0.0, 0.0])):\n"
"\t\t# Point is inside frustum !\n"
"\t\t# Do something useful !\n"
"\telse:\n"
"\t\t# Box is outside the frustum !\n"
)
{
MT_Point3 point;
if (PyVecArgTo(args, point))
{
return PyInt_FromLong(PointInsideFrustum(point)); /* new ref */
}
PyErr_SetString(PyExc_TypeError, "pointInsideFrustum: Expected point argument.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, getCameraToWorld,
"getCameraToWorld() -> Matrix4x4\n"
"\treturns the camera to world transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetCameraToWorld()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, getWorldToCamera,
"getWorldToCamera() -> Matrix4x4\n"
"\treturns the world to camera transformation matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetWorldToCamera()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, getProjectionMatrix,
"getProjectionMatrix() -> Matrix4x4\n"
"\treturns this camera's projection matrix, as a list of four lists of four values.\n\n"
"\tie: [[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0]])\n"
)
{
return PyObjectFrom(GetProjectionMatrix()); /* new ref */
}
KX_PYMETHODDEF_DOC(KX_Camera, setProjectionMatrix,
"setProjectionMatrix(MT_Matrix4x4 m) -> None\n"
"\tSets this camera's projection matrix\n"
"\n"
"\tExample:\n"
"\timport GameLogic\n"
"\t# Set a perspective projection matrix\n"
"\tdef Perspective(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = m[0][2] = right - left\n"
"\t\tm[1][1] = m[1][2] = top - bottom\n"
"\t\tm[2][2] = m[2][3] = -far - near\n"
"\t\tm[3][2] = -1\n"
"\t\tm[3][3] = 0\n"
"\t\treturn m\n"
"\n"
"\t# Set an orthographic projection matrix\n"
"\tdef Orthographic(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = right - left\n"
"\t\tm[0][3] = -right - left\n"
"\t\tm[1][1] = top - bottom\n"
"\t\tm[1][3] = -top - bottom\n"
"\t\tm[2][2] = far - near\n"
"\t\tm[2][3] = -far - near\n"
"\t\tm[3][3] = 1\n"
"\t\treturn m\n"
"\n"
"\t# Set an isometric projection matrix\n"
"\tdef Isometric(left, right, bottom, top, near, far):\n"
"\t\tm = MT_Matrix4x4()\n"
"\t\tm[0][0] = m[0][2] = m[1][1] = 0.8660254037844386\n"
"\t\tm[1][0] = 0.25\n"
"\t\tm[1][2] = -0.25\n"
"\t\tm[3][3] = 1\n"
"\t\treturn m\n"
"\n"
"\t"
"\tco = GameLogic.getCurrentController()\n"
"\tcam = co.getOwner()\n"
"\tcam.setProjectionMatrix(Perspective(-1.0, 1.0, -1.0, 1.0, 0.1, 1))\n")
{
PyObject *pymat;
if (PyArg_ParseTuple(args, "O", &pymat))
{
MT_Matrix4x4 mat;
if (PyMatTo(pymat, mat))
{
SetProjectionMatrix(mat);
Py_Return;
}
}
PyErr_SetString(PyExc_TypeError, "setProjectionMatrix: Expected 4x4 list as matrix argument.");
return NULL;
}
KX_PYMETHODDEF_DOC(KX_Camera, enableViewport,
"enableViewport(viewport)\n"
"Sets this camera's viewport status\n"
)
{
int viewport;
if (PyArg_ParseTuple(args,"i",&viewport))
{
if(viewport)
EnableViewport(true);
else
EnableViewport(false);
}
Py_Return;
}
KX_PYMETHODDEF_DOC(KX_Camera, setViewport,
"setViewport(left, bottom, right, top)\n"
"Sets this camera's viewport\n")
{
int left, bottom, right, top;
if (PyArg_ParseTuple(args,"iiii",&left, &bottom, &right, &top))
{
SetViewport(left, bottom, right, top);
}
Py_Return;
}
KX_PYMETHODDEF_DOC(KX_Camera, setOnTop,
"setOnTop()\n"
"Sets this camera's viewport on top\n")
{
class KX_Scene* scene;
scene = PHY_GetActiveScene();
MT_assert(scene);
scene->SetCameraOnTop(this);
Py_Return;
}