blender/intern/cycles/kernel/svm/bevel.h
Lukas Stockner c41601becd Fix T89037: Cycles: Backfacing node can be wrong for lights with negative scale
When rendering in the viewport (or probably on instanced objects, but I didn't
test that), emissive objects whose scale is negative give the wrong value on the
"backfacing" input when multiple sampling is enabled.

The underlying problem was a corner case in how normal transformation is handled,
which is generally a bit messy.

From what I can tell, the pattern appears to be:
- If you first transform vertices to world space and then compute the normal from
  them (as triangle light samping, MNEE and light tree do), you need to flip
  whenever the transform has negative scale regardless of whether the transform
  has been applied
- If you compute the normal in object space and then transform it to world space
  (as the regular shader_setup_from_ray path does), you only need to flip if the
  transform was already applied and was negative
- If you get the normal from a local intersection result (as bevel and SSS do),
  you only need to flip if the transform was already applied and was negative
- If you get the normal from vertex normals, you don't need to do anything since
  the host-side code does the flip for you (arguably it'd be more consistent to
  do this in the kernel as well, but meh, not worth the potential slowdown)

So, this patch fixes the logic in the triangle emission code.

Also, turns out that the MNEE code had the same problem and was also having
problems in the viewport on negative-scale objects, this is also fixed now.

Differential Revision: https://developer.blender.org/D16952
2023-01-10 02:55:23 +01:00

329 lines
10 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/bvh/bvh.h"
#include "kernel/sample/mapping.h"
#include "kernel/sample/pattern.h"
CCL_NAMESPACE_BEGIN
#ifdef __SHADER_RAYTRACE__
/* Planar Cubic BSSRDF falloff, reused for bevel.
*
* This is basically (Rm - x)^3, with some factors to normalize it. For sampling
* we integrate 2*pi*x * (Rm - x)^3, which gives us a quintic equation that as
* far as I can tell has no closed form solution. So we get an iterative solution
* instead with newton-raphson. */
ccl_device float svm_bevel_cubic_eval(const float radius, float r)
{
const float Rm = radius;
if (r >= Rm)
return 0.0f;
/* integrate (2*pi*r * 10*(R - r)^3)/(pi * R^5) from 0 to R = 1 */
const float Rm5 = (Rm * Rm) * (Rm * Rm) * Rm;
const float f = Rm - r;
const float num = f * f * f;
return (10.0f * num) / (Rm5 * M_PI_F);
}
ccl_device float svm_bevel_cubic_pdf(const float radius, float r)
{
return svm_bevel_cubic_eval(radius, r);
}
/* solve 10x^2 - 20x^3 + 15x^4 - 4x^5 - xi == 0 */
ccl_device_forceinline float svm_bevel_cubic_quintic_root_find(float xi)
{
/* newton-raphson iteration, usually succeeds in 2-4 iterations, except
* outside 0.02 ... 0.98 where it can go up to 10, so overall performance
* should not be too bad */
const float tolerance = 1e-6f;
const int max_iteration_count = 10;
float x = 0.25f;
int i;
for (i = 0; i < max_iteration_count; i++) {
float x2 = x * x;
float x3 = x2 * x;
float nx = (1.0f - x);
float f = 10.0f * x2 - 20.0f * x3 + 15.0f * x2 * x2 - 4.0f * x2 * x3 - xi;
float f_ = 20.0f * (x * nx) * (nx * nx);
if (fabsf(f) < tolerance || f_ == 0.0f)
break;
x = saturatef(x - f / f_);
}
return x;
}
ccl_device void svm_bevel_cubic_sample(const float radius,
float xi,
ccl_private float *r,
ccl_private float *h)
{
float Rm = radius;
float r_ = svm_bevel_cubic_quintic_root_find(xi);
r_ *= Rm;
*r = r_;
/* h^2 + r^2 = Rm^2 */
*h = safe_sqrtf(Rm * Rm - r_ * r_);
}
/* Bevel shader averaging normals from nearby surfaces.
*
* Sampling strategy from: BSSRDF Importance Sampling, SIGGRAPH 2013
* http://library.imageworks.com/pdfs/imageworks-library-BSSRDF-sampling.pdf
*/
# ifdef __KERNEL_OPTIX__
extern "C" __device__ float3 __direct_callable__svm_node_bevel(
# else
ccl_device float3 svm_bevel(
# endif
KernelGlobals kg,
ConstIntegratorState state,
ccl_private ShaderData *sd,
float radius,
int num_samples)
{
/* Early out if no sampling needed. */
if (radius <= 0.0f || num_samples < 1 || sd->object == OBJECT_NONE) {
return sd->N;
}
/* Can't ray-trace from shaders like displacement, before BVH exists. */
if (kernel_data.bvh.bvh_layout == BVH_LAYOUT_NONE) {
return sd->N;
}
/* Don't bevel for blurry indirect rays. */
if (INTEGRATOR_STATE(state, path, min_ray_pdf) < 8.0f) {
return sd->N;
}
/* Setup for multi intersection. */
LocalIntersection isect;
uint lcg_state = lcg_state_init(INTEGRATOR_STATE(state, path, rng_hash),
INTEGRATOR_STATE(state, path, rng_offset),
INTEGRATOR_STATE(state, path, sample),
0x64c6a40e);
/* Sample normals from surrounding points on surface. */
float3 sum_N = make_float3(0.0f, 0.0f, 0.0f);
/* TODO: support ray-tracing in shadow shader evaluation? */
RNGState rng_state;
path_state_rng_load(state, &rng_state);
for (int sample = 0; sample < num_samples; sample++) {
float2 rand_disk = path_branched_rng_2D(
kg, &rng_state, sample, num_samples, PRNG_SURFACE_BEVEL);
/* Pick random axis in local frame and point on disk. */
float3 disk_N, disk_T, disk_B;
float pick_pdf_N, pick_pdf_T, pick_pdf_B;
disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B);
float axisu = rand_disk.x;
if (axisu < 0.5f) {
pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f;
rand_disk.x *= 2.0f;
}
else if (axisu < 0.75f) {
float3 tmp = disk_N;
disk_N = disk_T;
disk_T = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f;
rand_disk.x = (rand_disk.x - 0.5f) * 4.0f;
}
else {
float3 tmp = disk_N;
disk_N = disk_B;
disk_B = tmp;
pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f;
rand_disk.x = (rand_disk.x - 0.75f) * 4.0f;
}
/* Sample point on disk. */
float phi = M_2PI_F * rand_disk.x;
float disk_r = rand_disk.y;
float disk_height;
/* Perhaps find something better than Cubic BSSRDF, but happens to work well. */
svm_bevel_cubic_sample(radius, disk_r, &disk_r, &disk_height);
float3 disk_P = (disk_r * cosf(phi)) * disk_T + (disk_r * sinf(phi)) * disk_B;
/* Create ray. */
Ray ray ccl_optional_struct_init;
ray.P = sd->P + disk_N * disk_height + disk_P;
ray.D = -disk_N;
ray.tmin = 0.0f;
ray.tmax = 2.0f * disk_height;
ray.dP = differential_zero_compact();
ray.dD = differential_zero_compact();
ray.time = sd->time;
ray.self.object = OBJECT_NONE;
ray.self.prim = PRIM_NONE;
ray.self.light_object = OBJECT_NONE;
ray.self.light_prim = PRIM_NONE;
/* Intersect with the same object. if multiple intersections are found it
* will use at most LOCAL_MAX_HITS hits, a random subset of all hits. */
scene_intersect_local(kg, &ray, &isect, sd->object, &lcg_state, LOCAL_MAX_HITS);
int num_eval_hits = min(isect.num_hits, LOCAL_MAX_HITS);
for (int hit = 0; hit < num_eval_hits; hit++) {
/* Quickly retrieve P and Ng without setting up ShaderData. */
float3 hit_P;
if (sd->type == PRIMITIVE_TRIANGLE) {
hit_P = triangle_point_from_uv(kg,
sd,
isect.hits[hit].object,
isect.hits[hit].prim,
isect.hits[hit].u,
isect.hits[hit].v);
}
# ifdef __OBJECT_MOTION__
else if (sd->type == PRIMITIVE_MOTION_TRIANGLE) {
float3 verts[3];
motion_triangle_vertices(kg, sd->object, isect.hits[hit].prim, sd->time, verts);
hit_P = motion_triangle_point_from_uv(kg,
sd,
isect.hits[hit].object,
isect.hits[hit].prim,
isect.hits[hit].u,
isect.hits[hit].v,
verts);
}
# endif /* __OBJECT_MOTION__ */
/* Get geometric normal. */
float3 hit_Ng = isect.Ng[hit];
int object = isect.hits[hit].object;
int object_flag = kernel_data_fetch(object_flag, object);
if (object_negative_scale_applied(object_flag)) {
hit_Ng = -hit_Ng;
}
/* Compute smooth normal. */
float3 N = hit_Ng;
int prim = isect.hits[hit].prim;
int shader = kernel_data_fetch(tri_shader, prim);
if (shader & SHADER_SMOOTH_NORMAL) {
float u = isect.hits[hit].u;
float v = isect.hits[hit].v;
if (sd->type == PRIMITIVE_TRIANGLE) {
N = triangle_smooth_normal(kg, N, prim, u, v);
}
# ifdef __OBJECT_MOTION__
else if (sd->type == PRIMITIVE_MOTION_TRIANGLE) {
N = motion_triangle_smooth_normal(kg, N, sd->object, prim, u, v, sd->time);
}
# endif /* __OBJECT_MOTION__ */
}
/* Transform normals to world space. */
if (!(object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_normal_transform(kg, sd, &N);
object_normal_transform(kg, sd, &hit_Ng);
}
/* Probability densities for local frame axes. */
float pdf_N = pick_pdf_N * fabsf(dot(disk_N, hit_Ng));
float pdf_T = pick_pdf_T * fabsf(dot(disk_T, hit_Ng));
float pdf_B = pick_pdf_B * fabsf(dot(disk_B, hit_Ng));
/* Multiple importance sample between 3 axes, power heuristic
* found to be slightly better than balance heuristic. pdf_N
* in the MIS weight and denominator canceled out. */
float w = pdf_N / (sqr(pdf_N) + sqr(pdf_T) + sqr(pdf_B));
if (isect.num_hits > LOCAL_MAX_HITS) {
w *= isect.num_hits / (float)LOCAL_MAX_HITS;
}
/* Real distance to sampled point. */
float r = len(hit_P - sd->P);
/* Compute weight. */
float pdf = svm_bevel_cubic_pdf(radius, r);
float disk_pdf = svm_bevel_cubic_pdf(radius, disk_r);
w *= pdf / disk_pdf;
/* Sum normal and weight. */
sum_N += w * N;
}
}
/* Normalize. */
float3 N = safe_normalize(sum_N);
return is_zero(N) ? sd->N : (sd->flag & SD_BACKFACING) ? -N : N;
}
template<uint node_feature_mask, typename ConstIntegratorGenericState>
# if defined(__KERNEL_OPTIX__)
ccl_device_inline
# else
ccl_device_noinline
# endif
void
svm_node_bevel(KernelGlobals kg,
ConstIntegratorGenericState state,
ccl_private ShaderData *sd,
ccl_private float *stack,
uint4 node)
{
uint num_samples, radius_offset, normal_offset, out_offset;
svm_unpack_node_uchar4(node.y, &num_samples, &radius_offset, &normal_offset, &out_offset);
float3 bevel_N = sd->N;
IF_KERNEL_NODES_FEATURE(RAYTRACE)
{
float radius = stack_load_float(stack, radius_offset);
# ifdef __KERNEL_OPTIX__
bevel_N = optixDirectCall<float3>(1, kg, state, sd, radius, num_samples);
# else
bevel_N = svm_bevel(kg, state, sd, radius, num_samples);
# endif
if (stack_valid(normal_offset)) {
/* Preserve input normal. */
float3 ref_N = stack_load_float3(stack, normal_offset);
bevel_N = normalize(ref_N + (bevel_N - sd->N));
}
}
stack_store_float3(stack, out_offset, bevel_N);
}
#endif /* __SHADER_RAYTRACE__ */
CCL_NAMESPACE_END