blender/intern/cycles/kernel/geom/primitive.h
Patrick Mours ef7c9e793e Cycles: Remove separate OSL attribute map and instead always use SVM attribute map
The SVM attribute map is always generated and uses a simple
linear search to lookup by an opaque ID, so can reuse that for OSL
as well and simply use the attribute name hash as ID instead of
generating a unique value separately. This works for both object
and geometry attributes since the SVM attribute map already
stores both. Simplifies code somewhat and reduces memory
usage slightly.

This patch was split from D15902.

Differential Revision: https://developer.blender.org/D15918
2022-09-09 15:35:44 +02:00

387 lines
13 KiB
C

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
/* Primitive Utilities
*
* Generic functions to look up mesh, curve and volume primitive attributes for
* shading and render passes. */
#pragma once
#include "kernel/camera/projection.h"
CCL_NAMESPACE_BEGIN
/* Surface Attributes
*
* Read geometry attributes for surface shading. This is distinct from volume
* attributes for performance, mainly for GPU performance to avoid bringing in
* heavy volume interpolation code. */
ccl_device_forceinline float primitive_surface_attribute_float(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float *dx,
ccl_private float *dy)
{
if (sd->type & PRIMITIVE_TRIANGLE) {
if (subd_triangle_patch(kg, sd->prim) == ~0)
return triangle_attribute_float(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
else if (sd->type & PRIMITIVE_CURVE) {
return curve_attribute_float(kg, sd, desc, dx, dy);
}
#endif
#ifdef __POINTCLOUD__
else if (sd->type & PRIMITIVE_POINT) {
return point_attribute_float(kg, sd, desc, dx, dy);
}
#endif
else {
if (dx)
*dx = 0.0f;
if (dy)
*dy = 0.0f;
return 0.0f;
}
}
ccl_device_forceinline float2 primitive_surface_attribute_float2(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float2 *dx,
ccl_private float2 *dy)
{
if (sd->type & PRIMITIVE_TRIANGLE) {
if (subd_triangle_patch(kg, sd->prim) == ~0)
return triangle_attribute_float2(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float2(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
else if (sd->type & PRIMITIVE_CURVE) {
return curve_attribute_float2(kg, sd, desc, dx, dy);
}
#endif
#ifdef __POINTCLOUD__
else if (sd->type & PRIMITIVE_POINT) {
return point_attribute_float2(kg, sd, desc, dx, dy);
}
#endif
else {
if (dx)
*dx = make_float2(0.0f, 0.0f);
if (dy)
*dy = make_float2(0.0f, 0.0f);
return make_float2(0.0f, 0.0f);
}
}
ccl_device_forceinline float3 primitive_surface_attribute_float3(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float3 *dx,
ccl_private float3 *dy)
{
if (sd->type & PRIMITIVE_TRIANGLE) {
if (subd_triangle_patch(kg, sd->prim) == ~0)
return triangle_attribute_float3(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float3(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
else if (sd->type & PRIMITIVE_CURVE) {
return curve_attribute_float3(kg, sd, desc, dx, dy);
}
#endif
#ifdef __POINTCLOUD__
else if (sd->type & PRIMITIVE_POINT) {
return point_attribute_float3(kg, sd, desc, dx, dy);
}
#endif
else {
if (dx)
*dx = make_float3(0.0f, 0.0f, 0.0f);
if (dy)
*dy = make_float3(0.0f, 0.0f, 0.0f);
return make_float3(0.0f, 0.0f, 0.0f);
}
}
ccl_device_forceinline float4 primitive_surface_attribute_float4(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float4 *dx,
ccl_private float4 *dy)
{
if (sd->type & PRIMITIVE_TRIANGLE) {
if (subd_triangle_patch(kg, sd->prim) == ~0)
return triangle_attribute_float4(kg, sd, desc, dx, dy);
else
return subd_triangle_attribute_float4(kg, sd, desc, dx, dy);
}
#ifdef __HAIR__
else if (sd->type & PRIMITIVE_CURVE) {
return curve_attribute_float4(kg, sd, desc, dx, dy);
}
#endif
#ifdef __POINTCLOUD__
else if (sd->type & PRIMITIVE_POINT) {
return point_attribute_float4(kg, sd, desc, dx, dy);
}
#endif
else {
if (dx)
*dx = zero_float4();
if (dy)
*dy = zero_float4();
return zero_float4();
}
}
#ifdef __VOLUME__
/* Volume Attributes
*
* Read geometry attributes for volume shading. This is distinct from surface
* attributes for performance, mainly for GPU performance to avoid bringing in
* heavy volume interpolation code. */
ccl_device_forceinline bool primitive_is_volume_attribute(ccl_private const ShaderData *sd,
const AttributeDescriptor desc)
{
return sd->type == PRIMITIVE_VOLUME;
}
ccl_device_forceinline float primitive_volume_attribute_float(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc)
{
if (primitive_is_volume_attribute(sd, desc)) {
return volume_attribute_value_to_float(volume_attribute_float4(kg, sd, desc));
}
else {
return 0.0f;
}
}
ccl_device_forceinline float3 primitive_volume_attribute_float3(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc)
{
if (primitive_is_volume_attribute(sd, desc)) {
return volume_attribute_value_to_float3(volume_attribute_float4(kg, sd, desc));
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
}
ccl_device_forceinline float4 primitive_volume_attribute_float4(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc)
{
if (primitive_is_volume_attribute(sd, desc)) {
return volume_attribute_float4(kg, sd, desc);
}
else {
return zero_float4();
}
}
#endif
/* Default UV coordinate */
ccl_device_forceinline float3 primitive_uv(KernelGlobals kg, ccl_private const ShaderData *sd)
{
const AttributeDescriptor desc = find_attribute(kg, sd, ATTR_STD_UV);
if (desc.offset == ATTR_STD_NOT_FOUND)
return make_float3(0.0f, 0.0f, 0.0f);
float2 uv = primitive_surface_attribute_float2(kg, sd, desc, NULL, NULL);
return make_float3(uv.x, uv.y, 1.0f);
}
/* Ptex coordinates */
ccl_device bool primitive_ptex(KernelGlobals kg,
ccl_private ShaderData *sd,
ccl_private float2 *uv,
ccl_private int *face_id)
{
/* storing ptex data as attributes is not memory efficient but simple for tests */
const AttributeDescriptor desc_face_id = find_attribute(kg, sd, ATTR_STD_PTEX_FACE_ID);
const AttributeDescriptor desc_uv = find_attribute(kg, sd, ATTR_STD_PTEX_UV);
if (desc_face_id.offset == ATTR_STD_NOT_FOUND || desc_uv.offset == ATTR_STD_NOT_FOUND)
return false;
float3 uv3 = primitive_surface_attribute_float3(kg, sd, desc_uv, NULL, NULL);
float face_id_f = primitive_surface_attribute_float(kg, sd, desc_face_id, NULL, NULL);
*uv = make_float2(uv3.x, uv3.y);
*face_id = (int)face_id_f;
return true;
}
/* Surface tangent */
ccl_device float3 primitive_tangent(KernelGlobals kg, ccl_private ShaderData *sd)
{
#if defined(__HAIR__) || defined(__POINTCLOUD__)
if (sd->type & (PRIMITIVE_CURVE | PRIMITIVE_POINT))
# ifdef __DPDU__
return normalize(sd->dPdu);
# else
return make_float3(0.0f, 0.0f, 0.0f);
# endif
#endif
/* try to create spherical tangent from generated coordinates */
const AttributeDescriptor desc = find_attribute(kg, sd, ATTR_STD_GENERATED);
if (desc.offset != ATTR_STD_NOT_FOUND) {
float3 data = primitive_surface_attribute_float3(kg, sd, desc, NULL, NULL);
data = make_float3(-(data.y - 0.5f), (data.x - 0.5f), 0.0f);
object_normal_transform(kg, sd, &data);
return cross(sd->N, normalize(cross(data, sd->N)));
}
else {
/* otherwise use surface derivatives */
#ifdef __DPDU__
return normalize(sd->dPdu);
#else
return make_float3(0.0f, 0.0f, 0.0f);
#endif
}
}
/* Motion vector for motion pass */
ccl_device_forceinline float4 primitive_motion_vector(KernelGlobals kg,
ccl_private const ShaderData *sd)
{
/* center position */
float3 center;
#if defined(__HAIR__) || defined(__POINTCLOUD__)
bool is_curve_or_point = sd->type & (PRIMITIVE_CURVE | PRIMITIVE_POINT);
if (is_curve_or_point) {
center = make_float3(0.0f, 0.0f, 0.0f);
if (sd->type & PRIMITIVE_CURVE) {
# if defined(__HAIR__)
center = curve_motion_center_location(kg, sd);
# endif
}
else if (sd->type & PRIMITIVE_POINT) {
# if defined(__POINTCLOUD__)
center = point_motion_center_location(kg, sd);
# endif
}
if (!(sd->object_flag & SD_OBJECT_TRANSFORM_APPLIED)) {
object_position_transform(kg, sd, &center);
}
}
else
#endif
{
center = sd->P;
}
float3 motion_pre = center, motion_post = center;
/* deformation motion */
AttributeDescriptor desc = find_attribute(kg, sd, ATTR_STD_MOTION_VERTEX_POSITION);
if (desc.offset != ATTR_STD_NOT_FOUND) {
/* get motion info */
int numverts, numkeys;
object_motion_info(kg, sd->object, NULL, &numverts, &numkeys);
#if defined(__HAIR__) || defined(__POINTCLOUD__)
if (is_curve_or_point) {
motion_pre = float4_to_float3(curve_attribute_float4(kg, sd, desc, NULL, NULL));
desc.offset += numkeys;
motion_post = float4_to_float3(curve_attribute_float4(kg, sd, desc, NULL, NULL));
/* Curve */
if ((sd->object_flag & SD_OBJECT_HAS_VERTEX_MOTION) == 0) {
object_position_transform(kg, sd, &motion_pre);
object_position_transform(kg, sd, &motion_post);
}
}
else
#endif
if (sd->type & PRIMITIVE_TRIANGLE) {
/* Triangle */
if (subd_triangle_patch(kg, sd->prim) == ~0) {
motion_pre = triangle_attribute_float3(kg, sd, desc, NULL, NULL);
desc.offset += numverts;
motion_post = triangle_attribute_float3(kg, sd, desc, NULL, NULL);
}
else {
motion_pre = subd_triangle_attribute_float3(kg, sd, desc, NULL, NULL);
desc.offset += numverts;
motion_post = subd_triangle_attribute_float3(kg, sd, desc, NULL, NULL);
}
}
}
/* object motion. note that depending on the mesh having motion vectors, this
* transformation was set match the world/object space of motion_pre/post */
Transform tfm;
tfm = object_fetch_motion_pass_transform(kg, sd->object, OBJECT_PASS_MOTION_PRE);
motion_pre = transform_point(&tfm, motion_pre);
tfm = object_fetch_motion_pass_transform(kg, sd->object, OBJECT_PASS_MOTION_POST);
motion_post = transform_point(&tfm, motion_post);
float3 motion_center;
/* camera motion, for perspective/orthographic motion.pre/post will be a
* world-to-raster matrix, for panorama it's world-to-camera */
if (kernel_data.cam.type != CAMERA_PANORAMA) {
ProjectionTransform projection = kernel_data.cam.worldtoraster;
motion_center = transform_perspective(&projection, center);
projection = kernel_data.cam.perspective_pre;
motion_pre = transform_perspective(&projection, motion_pre);
projection = kernel_data.cam.perspective_post;
motion_post = transform_perspective(&projection, motion_post);
}
else {
tfm = kernel_data.cam.worldtocamera;
motion_center = normalize(transform_point(&tfm, center));
motion_center = float2_to_float3(direction_to_panorama(&kernel_data.cam, motion_center));
motion_center.x *= kernel_data.cam.width;
motion_center.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion_pass_pre;
motion_pre = normalize(transform_point(&tfm, motion_pre));
motion_pre = float2_to_float3(direction_to_panorama(&kernel_data.cam, motion_pre));
motion_pre.x *= kernel_data.cam.width;
motion_pre.y *= kernel_data.cam.height;
tfm = kernel_data.cam.motion_pass_post;
motion_post = normalize(transform_point(&tfm, motion_post));
motion_post = float2_to_float3(direction_to_panorama(&kernel_data.cam, motion_post));
motion_post.x *= kernel_data.cam.width;
motion_post.y *= kernel_data.cam.height;
}
motion_pre = motion_pre - motion_center;
motion_post = motion_center - motion_post;
return make_float4(motion_pre.x, motion_pre.y, motion_post.x, motion_post.y);
}
CCL_NAMESPACE_END