5d0a207ecb
blocks that were previously missed; and b) greatly increase my ohloh stats!
132 lines
3.4 KiB
C++
132 lines
3.4 KiB
C++
/**
|
|
* $Id$
|
|
* ***** BEGIN GPL LICENSE BLOCK *****
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
|
|
* All rights reserved.
|
|
*
|
|
* The Original Code is: all of this file.
|
|
*
|
|
* Contributor(s): none yet.
|
|
*
|
|
* ***** END GPL LICENSE BLOCK *****
|
|
*/
|
|
|
|
#include "RAS_TexMatrix.h"
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
void RAS_CalcTexMatrix(RAS_TexVert p[3],MT_Point3& origin,MT_Vector3& udir,MT_Vector3& vdir)
|
|
{
|
|
// precondition: 3 vertices are non-colinear
|
|
|
|
MT_Vector3 vec1 = p[1].xyz()-p[0].xyz();
|
|
MT_Vector3 vec2 = p[2].xyz()-p[0].xyz();
|
|
MT_Vector3 normal = vec1.cross(vec2);
|
|
normal.normalize();
|
|
|
|
// determine which coordinate we drop, ie. max coordinate in the normal
|
|
|
|
|
|
int ZCOORD = normal.closestAxis();
|
|
int XCOORD = (ZCOORD+1)%3;
|
|
int YCOORD = (ZCOORD+2)%3;
|
|
|
|
// ax+by+cz+d=0
|
|
MT_Scalar d = -p[0].xyz().dot(normal);
|
|
|
|
|
|
MT_Matrix3x3 mat3( p[0].getUV1()[0],p[0].getUV1()[1], 1,
|
|
p[1].getUV1()[0],p[1].getUV1()[1], 1,
|
|
p[2].getUV1()[0],p[2].getUV1()[1], 1);
|
|
|
|
|
|
MT_Matrix3x3 mat3inv = mat3.inverse();
|
|
|
|
MT_Vector3 p123x(p[0].xyz()[XCOORD],p[1].xyz()[XCOORD],p[2].xyz()[XCOORD]);
|
|
MT_Vector3 resultx = mat3inv*p123x;
|
|
MT_Vector3 p123y(p[0].xyz()[YCOORD],p[1].xyz()[YCOORD],p[2].xyz()[YCOORD]);
|
|
MT_Vector3 resulty = mat3inv*p123y;
|
|
|
|
// normal[ZCOORD] is not zero, because it's chosen to be maximal (absolute), and normal has length 1,
|
|
// so at least on of the coords is <> 0
|
|
|
|
//droppedvalue udir.dot(normal) =0
|
|
MT_Scalar droppedu = -(resultx.x()*normal[XCOORD]+resulty.x()*normal[YCOORD])/normal[ZCOORD];
|
|
udir[XCOORD] = resultx.x();
|
|
udir[YCOORD] = resulty.x();
|
|
udir[ZCOORD] = droppedu;
|
|
MT_Scalar droppedv = -(resultx.y()*normal[XCOORD]+resulty.y()*normal[YCOORD])/normal[ZCOORD];
|
|
vdir[XCOORD] = resultx.y();
|
|
vdir[YCOORD] = resulty.y();
|
|
vdir[ZCOORD] = droppedv;
|
|
// droppedvalue b = -(ax+cz+d)/y;
|
|
MT_Scalar droppedvalue = -((resultx.z()*normal[XCOORD] + resulty.z()*normal[YCOORD]+d))/normal[ZCOORD];
|
|
origin[XCOORD] = resultx.z();
|
|
origin[YCOORD] = resulty.z();
|
|
origin[ZCOORD] = droppedvalue;
|
|
|
|
|
|
}
|
|
|
|
#ifdef _TEXOWNMAIN
|
|
|
|
int main()
|
|
{
|
|
|
|
MT_Point2 puv0={0,0};
|
|
MT_Point3 pxyz0 (0,0,128);
|
|
|
|
MT_Scalar puv1[2]={1,0};
|
|
MT_Point3 pxyz1(128,0,128);
|
|
|
|
MT_Scalar puv2[2]={1,1};
|
|
MT_Point3 pxyz2(128,0,0);
|
|
|
|
RAS_TexVert p0(pxyz0,puv0);
|
|
RAS_TexVert p1(pxyz1,puv1);
|
|
RAS_TexVert p2(pxyz2,puv2);
|
|
|
|
RAS_TexVert vertices[3] =
|
|
{
|
|
p0,
|
|
p1,
|
|
p2
|
|
};
|
|
|
|
MT_Vector3 udir,vdir;
|
|
MT_Point3 origin;
|
|
CalcTexMatrix(vertices,origin,udir,vdir);
|
|
|
|
MT_Point3 testpoint(128,32,64);
|
|
|
|
MT_Scalar lenu = udir.length2();
|
|
MT_Scalar lenv = vdir.length2();
|
|
|
|
MT_Scalar testu=((pxyz2-origin).dot(udir))/lenu;
|
|
MT_Scalar testv=((pxyz2-origin).dot(vdir))/lenv;
|
|
|
|
|
|
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif // _TEXOWNMAIN
|