blender/source/gameengine/BlenderRoutines/KX_BlenderRenderTools.cpp
2009-04-23 13:30:34 +00:00

467 lines
14 KiB
C++

/**
* $Id$
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "GL/glew.h"
#include "DNA_scene_types.h"
#include "RAS_IRenderTools.h"
#include "RAS_IRasterizer.h"
#include "RAS_LightObject.h"
#include "RAS_ICanvas.h"
#include "RAS_GLExtensionManager.h"
#include "KX_GameObject.h"
#include "KX_PolygonMaterial.h"
#include "KX_BlenderMaterial.h"
#include "KX_RayCast.h"
#include "KX_IPhysicsController.h"
#include "PHY_IPhysicsEnvironment.h"
#include "STR_String.h"
#include "GPU_draw.h"
#include "KX_BlenderGL.h" // for text printing
#include "KX_BlenderRenderTools.h"
unsigned int KX_BlenderRenderTools::m_numgllights;
KX_BlenderRenderTools::KX_BlenderRenderTools()
{
glGetIntegerv(GL_MAX_LIGHTS, (GLint*) &m_numgllights);
if (m_numgllights < 8)
m_numgllights = 8;
}
KX_BlenderRenderTools::~KX_BlenderRenderTools()
{
}
void KX_BlenderRenderTools::BeginFrame(RAS_IRasterizer* rasty)
{
m_clientobject = NULL;
m_lastlightlayer = -1;
m_lastauxinfo = NULL;
m_lastlighting = true; /* force disable in DisableOpenGLLights() */
DisableOpenGLLights();
}
void KX_BlenderRenderTools::EndFrame(RAS_IRasterizer* rasty)
{
}
/* ProcessLighting performs lighting on objects. the layer is a bitfield that
* contains layer information. There are 20 'official' layers in blender. A
* light is applied on an object only when they are in the same layer. OpenGL
* has a maximum of 8 lights (simultaneous), so 20 * 8 lights are possible in
* a scene. */
void KX_BlenderRenderTools::ProcessLighting(RAS_IRasterizer *rasty, bool uselights, const MT_Transform& viewmat)
{
bool enable = false;
int layer= -1;
/* find the layer */
if(uselights) {
if(m_clientobject)
layer = static_cast<KX_GameObject*>(m_clientobject)->GetLayer();
}
/* avoid state switching */
if(m_lastlightlayer == layer && m_lastauxinfo == m_auxilaryClientInfo)
return;
m_lastlightlayer = layer;
m_lastauxinfo = m_auxilaryClientInfo;
/* enable/disable lights as needed */
if(layer >= 0)
enable = applyLights(layer, viewmat);
if(enable)
EnableOpenGLLights(rasty);
else
DisableOpenGLLights();
}
void KX_BlenderRenderTools::EnableOpenGLLights(RAS_IRasterizer *rasty)
{
if(m_lastlighting == true)
return;
glEnable(GL_LIGHTING);
glEnable(GL_COLOR_MATERIAL);
glColorMaterial(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE);
glLightModeli(GL_LIGHT_MODEL_TWO_SIDE, GL_TRUE);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, (rasty->GetCameraOrtho())? GL_FALSE: GL_TRUE);
if (GLEW_EXT_separate_specular_color || GLEW_VERSION_1_2)
glLightModeli(GL_LIGHT_MODEL_COLOR_CONTROL, GL_SEPARATE_SPECULAR_COLOR);
m_lastlighting = true;
}
void KX_BlenderRenderTools::DisableOpenGLLights()
{
if(m_lastlighting == false)
return;
glDisable(GL_LIGHTING);
glDisable(GL_COLOR_MATERIAL);
m_lastlighting = false;
}
void KX_BlenderRenderTools::SetClientObject(RAS_IRasterizer *rasty, void* obj)
{
if (m_clientobject != obj)
{
bool ccw = (obj == NULL || !((KX_GameObject*)obj)->IsNegativeScaling());
rasty->SetFrontFace(ccw);
m_clientobject = obj;
}
}
bool KX_BlenderRenderTools::RayHit(KX_ClientObjectInfo* client, KX_RayCast* result, void * const data)
{
double* const oglmatrix = (double* const) data;
MT_Point3 resultpoint(result->m_hitPoint);
MT_Vector3 resultnormal(result->m_hitNormal);
MT_Vector3 left(oglmatrix[0],oglmatrix[1],oglmatrix[2]);
MT_Vector3 dir = -(left.cross(resultnormal)).safe_normalized();
left = (dir.cross(resultnormal)).safe_normalized();
// for the up vector, we take the 'resultnormal' returned by the physics
double maat[16]={
left[0], left[1], left[2], 0,
dir[0], dir[1], dir[2], 0,
resultnormal[0],resultnormal[1],resultnormal[2], 0,
0, 0, 0, 1};
glTranslated(resultpoint[0],resultpoint[1],resultpoint[2]);
//glMultMatrixd(oglmatrix);
glMultMatrixd(maat);
return true;
}
void KX_BlenderRenderTools::applyTransform(RAS_IRasterizer* rasty,double* oglmatrix,int objectdrawmode )
{
/* FIXME:
blender: intern/moto/include/MT_Vector3.inl:42: MT_Vector3 operator/(const
MT_Vector3&, double): Assertion `!MT_fuzzyZero(s)' failed.
Program received signal SIGABRT, Aborted.
[Switching to Thread 16384 (LWP 1519)]
0x40477571 in kill () from /lib/libc.so.6
(gdb) bt
#7 0x08334368 in MT_Vector3::normalized() const ()
#8 0x0833e6ec in KX_BlenderRenderTools::applyTransform(RAS_IRasterizer*, double*, int) ()
*/
if (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED ||
objectdrawmode & RAS_IPolyMaterial::BILLBOARD_AXISALIGNED)
{
// rotate the billboard/halo
//page 360/361 3D Game Engine Design, David Eberly for a discussion
// on screen aligned and axis aligned billboards
// assumed is that the preprocessor transformed all billboard polygons
// so that their normal points into the positive x direction (1.0 , 0.0 , 0.0)
// when new parenting for objects is done, this rotation
// will be moved into the object
MT_Point3 objpos (oglmatrix[12],oglmatrix[13],oglmatrix[14]);
MT_Point3 campos = rasty->GetCameraPosition();
MT_Vector3 dir = (campos - objpos).safe_normalized();
MT_Vector3 up(0,0,1.0);
KX_GameObject* gameobj = (KX_GameObject*)m_clientobject;
// get scaling of halo object
MT_Vector3 size = gameobj->GetSGNode()->GetLocalScale();
bool screenaligned = (objectdrawmode & RAS_IPolyMaterial::BILLBOARD_SCREENALIGNED)!=0;//false; //either screen or axisaligned
if (screenaligned)
{
up = (up - up.dot(dir) * dir).safe_normalized();
} else
{
dir = (dir - up.dot(dir)*up).safe_normalized();
}
MT_Vector3 left = dir.normalized();
dir = (left.cross(up)).normalized();
// we have calculated the row vectors, now we keep
// local scaling into account:
left *= size[0];
dir *= size[1];
up *= size[2];
double maat[16]={
left[0], left[1],left[2], 0,
dir[0], dir[1],dir[2],0,
up[0],up[1],up[2],0,
0,0,0,1};
glTranslated(objpos[0],objpos[1],objpos[2]);
glMultMatrixd(maat);
} else
{
if (objectdrawmode & RAS_IPolyMaterial::SHADOW)
{
// shadow must be cast to the ground, physics system needed here!
MT_Point3 frompoint(oglmatrix[12],oglmatrix[13],oglmatrix[14]);
KX_GameObject *gameobj = (KX_GameObject*)m_clientobject;
MT_Vector3 direction = MT_Vector3(0,0,-1);
direction.normalize();
direction *= 100000;
MT_Point3 topoint = frompoint + direction;
KX_Scene* kxscene = (KX_Scene*) m_auxilaryClientInfo;
PHY_IPhysicsEnvironment* physics_environment = kxscene->GetPhysicsEnvironment();
KX_IPhysicsController* physics_controller = gameobj->GetPhysicsController();
KX_GameObject *parent = gameobj->GetParent();
if (!physics_controller && parent)
physics_controller = parent->GetPhysicsController();
if (parent)
parent->Release();
KX_RayCast::Callback<KX_BlenderRenderTools> callback(this, physics_controller, oglmatrix);
if (!KX_RayCast::RayTest(physics_environment, frompoint, topoint, callback))
{
// couldn't find something to cast the shadow on...
glMultMatrixd(oglmatrix);
}
} else
{
// 'normal' object
glMultMatrixd(oglmatrix);
}
}
}
void KX_BlenderRenderTools::RenderText2D(RAS_TEXT_RENDER_MODE mode,
const char* text,
int xco,
int yco,
int width,
int height)
{
STR_String tmpstr(text);
if(mode == RAS_IRenderTools::RAS_TEXT_PADDED)
BL_print_gamedebug_line_padded(tmpstr.Ptr(), xco, yco, width, height);
else
BL_print_gamedebug_line(tmpstr.Ptr(), xco, yco, width, height);
}
/* Render Text renders text into a (series of) polygon, using a texture font,
* Each character consists of one polygon (one quad or two triangles) */
void KX_BlenderRenderTools::RenderText(
int mode,
RAS_IPolyMaterial* polymat,
float v1[3], float v2[3], float v3[3], float v4[3], int glattrib)
{
STR_String mytext = ((CValue*)m_clientobject)->GetPropertyText("Text");
const unsigned int flag = polymat->GetFlag();
struct MTFace* tface = 0;
unsigned int *col = 0;
if(flag & RAS_BLENDERMAT) {
KX_BlenderMaterial *bl_mat = static_cast<KX_BlenderMaterial*>(polymat);
tface = bl_mat->GetMTFace();
col = bl_mat->GetMCol();
} else {
KX_PolygonMaterial* blenderpoly = static_cast<KX_PolygonMaterial*>(polymat);
tface = blenderpoly->GetMTFace();
col = blenderpoly->GetMCol();
}
GPU_render_text(tface, mode, mytext, mytext.Length(), col, v1, v2, v3, v4, glattrib);
}
void KX_BlenderRenderTools::PushMatrix()
{
glPushMatrix();
}
void KX_BlenderRenderTools::PopMatrix()
{
glPopMatrix();
}
int KX_BlenderRenderTools::applyLights(int objectlayer, const MT_Transform& viewmat)
{
// taken from blender source, incompatibility between Blender Object / GameObject
KX_Scene* kxscene = (KX_Scene*)m_auxilaryClientInfo;
int scenelayer = ~0;
float glviewmat[16];
unsigned int count;
float vec[4];
vec[3]= 1.0;
if(kxscene && kxscene->GetBlenderScene())
scenelayer = kxscene->GetBlenderScene()->lay;
for(count=0; count<m_numgllights; count++)
glDisable((GLenum)(GL_LIGHT0+count));
//std::vector<struct RAS_LightObject*> m_lights;
std::vector<struct RAS_LightObject*>::iterator lit = m_lights.begin();
viewmat.getValue(glviewmat);
glPushMatrix();
glLoadMatrixf(glviewmat);
for (lit = m_lights.begin(), count = 0; !(lit==m_lights.end()) && count < m_numgllights; ++lit)
{
RAS_LightObject* lightdata = (*lit);
KX_Scene* lightscene = (KX_Scene*)lightdata->m_scene;
/* only use lights in the same layer as the object */
if(!(lightdata->m_layer & objectlayer))
continue;
/* only use lights in the same scene, and in a visible layer */
if(kxscene != lightscene || !(lightdata->m_layer & scenelayer))
continue;
vec[0] = (*(lightdata->m_worldmatrix))(0,3);
vec[1] = (*(lightdata->m_worldmatrix))(1,3);
vec[2] = (*(lightdata->m_worldmatrix))(2,3);
vec[3] = 1;
if(lightdata->m_type==RAS_LightObject::LIGHT_SUN) {
vec[0] = (*(lightdata->m_worldmatrix))(0,2);
vec[1] = (*(lightdata->m_worldmatrix))(1,2);
vec[2] = (*(lightdata->m_worldmatrix))(2,2);
//vec[0]= base->object->obmat[2][0];
//vec[1]= base->object->obmat[2][1];
//vec[2]= base->object->obmat[2][2];
vec[3]= 0.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
}
else {
//vec[3]= 1.0;
glLightfv((GLenum)(GL_LIGHT0+count), GL_POSITION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_CONSTANT_ATTENUATION, 1.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_LINEAR_ATTENUATION, lightdata->m_att1/lightdata->m_distance);
// without this next line it looks backward compatible.
//attennuation still is acceptable
glLightf((GLenum)(GL_LIGHT0+count), GL_QUADRATIC_ATTENUATION, lightdata->m_att2/(lightdata->m_distance*lightdata->m_distance));
if(lightdata->m_type==RAS_LightObject::LIGHT_SPOT) {
vec[0] = -(*(lightdata->m_worldmatrix))(0,2);
vec[1] = -(*(lightdata->m_worldmatrix))(1,2);
vec[2] = -(*(lightdata->m_worldmatrix))(2,2);
//vec[0]= -base->object->obmat[2][0];
//vec[1]= -base->object->obmat[2][1];
//vec[2]= -base->object->obmat[2][2];
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPOT_DIRECTION, vec);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, lightdata->m_spotsize/2.0);
glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_EXPONENT, 128.0*lightdata->m_spotblend);
}
else glLightf((GLenum)(GL_LIGHT0+count), GL_SPOT_CUTOFF, 180.0);
}
if (lightdata->m_nodiffuse)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_DIFFUSE, vec);
if (lightdata->m_nospecular)
{
vec[0] = vec[1] = vec[2] = vec[3] = 0.0;
} else if (lightdata->m_nodiffuse) {
vec[0]= lightdata->m_energy*lightdata->m_red;
vec[1]= lightdata->m_energy*lightdata->m_green;
vec[2]= lightdata->m_energy*lightdata->m_blue;
vec[3]= 1.0;
}
glLightfv((GLenum)(GL_LIGHT0+count), GL_SPECULAR, vec);
glEnable((GLenum)(GL_LIGHT0+count));
count++;
}
glPopMatrix();
return count;
}
void KX_BlenderRenderTools::MotionBlur(RAS_IRasterizer* rasterizer)
{
int state = rasterizer->GetMotionBlurState();
float motionblurvalue;
if(state)
{
motionblurvalue = rasterizer->GetMotionBlurValue();
if(state==1)
{
//bugfix:load color buffer into accum buffer for the first time(state=1)
glAccum(GL_LOAD, 1.0);
rasterizer->SetMotionBlurState(2);
}
else if(motionblurvalue>=0.0 && motionblurvalue<=1.0)
{
glAccum(GL_MULT, motionblurvalue);
glAccum(GL_ACCUM, 1-motionblurvalue);
glAccum(GL_RETURN, 1.0);
glFlush();
}
}
}
void KX_BlenderRenderTools::Update2DFilter(vector<STR_String>& propNames, void* gameObj, RAS_2DFilterManager::RAS_2DFILTER_MODE filtermode, int pass, STR_String& text)
{
m_filtermanager.EnableFilter(propNames, gameObj, filtermode, pass, text);
}
void KX_BlenderRenderTools::Render2DFilters(RAS_ICanvas* canvas)
{
m_filtermanager.RenderFilters(canvas);
}