refactor(ml): model sessions (#10559)
This commit is contained in:
@ -52,8 +52,6 @@ class Ann(metaclass=_Singleton):
|
||||
def __init__(self, log_level: int = 3, tuning_level: int = 1, tuning_file: str | None = None) -> None:
|
||||
if not is_available:
|
||||
raise RuntimeError("libann is not available!")
|
||||
if tuning_file and not exists(tuning_file):
|
||||
raise ValueError("tuning_file must point to an existing (possibly empty) file!")
|
||||
if tuning_level == 0 and tuning_file is None:
|
||||
raise ValueError("tuning_level == 0 reads existing tuning information and requires a tuning_file")
|
||||
if tuning_level < 0 or tuning_level > 3:
|
||||
@ -67,6 +65,12 @@ class Ann(metaclass=_Singleton):
|
||||
self.input_shapes: dict[int, tuple[tuple[int], ...]] = {}
|
||||
self.ann: int | None = None
|
||||
self.new()
|
||||
|
||||
if self.tuning_file is not None:
|
||||
# make sure tuning file exists (without clearing contents)
|
||||
# once filled, the tuning file reduces the cost/time of the first
|
||||
# inference after model load by 10s of seconds
|
||||
open(self.tuning_file, "a").close()
|
||||
|
||||
def new(self) -> None:
|
||||
if self.ann is None:
|
||||
@ -95,17 +99,19 @@ class Ann(metaclass=_Singleton):
|
||||
model_path: str,
|
||||
fast_math: bool = True,
|
||||
fp16: bool = False,
|
||||
save_cached_network: bool = False,
|
||||
cached_network_path: str | None = None,
|
||||
) -> int:
|
||||
if not model_path.endswith((".armnn", ".tflite", ".onnx")):
|
||||
raise ValueError("model_path must be a file with extension .armnn, .tflite or .onnx")
|
||||
if not exists(model_path):
|
||||
raise ValueError("model_path must point to an existing file!")
|
||||
|
||||
save_cached_network = False
|
||||
if cached_network_path is not None and not exists(cached_network_path):
|
||||
raise ValueError("cached_network_path must point to an existing (possibly empty) file!")
|
||||
if save_cached_network and cached_network_path is None:
|
||||
raise ValueError("save_cached_network is True, cached_network_path must be specified!")
|
||||
save_cached_network = True
|
||||
# create empty model cache file
|
||||
open(cached_network_path, "a").close()
|
||||
|
||||
net_id: int = libann.load(
|
||||
self.ann,
|
||||
model_path.encode(),
|
||||
|
@ -8,6 +8,8 @@ from fastapi.testclient import TestClient
|
||||
from numpy.typing import NDArray
|
||||
from PIL import Image
|
||||
|
||||
from app.config import log
|
||||
|
||||
from .main import app
|
||||
|
||||
|
||||
@ -96,12 +98,77 @@ def clip_tokenizer_cfg() -> dict[str, Any]:
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def providers(request: pytest.FixtureRequest) -> Iterator[dict[str, Any]]:
|
||||
def providers(request: pytest.FixtureRequest) -> Iterator[mock.Mock]:
|
||||
marker = request.node.get_closest_marker("providers")
|
||||
if marker is None:
|
||||
raise ValueError("Missing marker 'providers'")
|
||||
|
||||
providers = marker.args[0]
|
||||
with mock.patch("app.models.base.ort.get_available_providers") as mocked:
|
||||
with mock.patch("app.sessions.ort.ort.get_available_providers") as mocked:
|
||||
mocked.return_value = providers
|
||||
yield providers
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def ort_pybind() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.sessions.ort.ort.capi._pybind_state") as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def ov_device_ids(request: pytest.FixtureRequest, ort_pybind: mock.Mock) -> Iterator[mock.Mock]:
|
||||
marker = request.node.get_closest_marker("ov_device_ids")
|
||||
if marker is None:
|
||||
raise ValueError("Missing marker 'ov_device_ids'")
|
||||
ort_pybind.get_available_openvino_device_ids.return_value = marker.args[0]
|
||||
return ort_pybind
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def ort_session() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.sessions.ort.ort.InferenceSession") as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def ann_session() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.sessions.ann.Ann") as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def rmtree() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.models.base.rmtree", autospec=True) as mocked:
|
||||
mocked.avoids_symlink_attacks = True
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def path() -> Iterator[mock.Mock]:
|
||||
path = mock.MagicMock()
|
||||
path.exists.return_value = True
|
||||
path.is_dir.return_value = True
|
||||
path.is_file.return_value = True
|
||||
path.with_suffix.return_value = path
|
||||
path.return_value = path
|
||||
|
||||
with mock.patch("app.models.base.Path", return_value=path) as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def info() -> Iterator[mock.Mock]:
|
||||
with mock.patch.object(log, "info") as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def warning() -> Iterator[mock.Mock]:
|
||||
with mock.patch.object(log, "warning") as mocked:
|
||||
yield mocked
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def snapshot_download() -> Iterator[mock.Mock]:
|
||||
with mock.patch("app.models.base.snapshot_download") as mocked:
|
||||
yield mocked
|
||||
|
@ -5,15 +5,14 @@ from pathlib import Path
|
||||
from shutil import rmtree
|
||||
from typing import Any, ClassVar
|
||||
|
||||
import onnxruntime as ort
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
import ann.ann
|
||||
from app.models.constants import SUPPORTED_PROVIDERS
|
||||
from app.sessions.ort import OrtSession
|
||||
|
||||
from ..config import clean_name, log, settings
|
||||
from ..schemas import ModelFormat, ModelIdentity, ModelSession, ModelTask, ModelType
|
||||
from .ann import AnnSession
|
||||
from ..sessions.ann import AnnSession
|
||||
|
||||
|
||||
class InferenceModel(ABC):
|
||||
@ -24,20 +23,17 @@ class InferenceModel(ABC):
|
||||
self,
|
||||
model_name: str,
|
||||
cache_dir: Path | str | None = None,
|
||||
providers: list[str] | None = None,
|
||||
provider_options: list[dict[str, Any]] | None = None,
|
||||
sess_options: ort.SessionOptions | None = None,
|
||||
preferred_format: ModelFormat | None = None,
|
||||
session: ModelSession | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.loaded = False
|
||||
self.loaded = session is not None
|
||||
self.load_attempts = 0
|
||||
self.model_name = clean_name(model_name)
|
||||
self.cache_dir = Path(cache_dir) if cache_dir is not None else self.cache_dir_default
|
||||
self.providers = providers if providers is not None else self.providers_default
|
||||
self.provider_options = provider_options if provider_options is not None else self.provider_options_default
|
||||
self.sess_options = sess_options if sess_options is not None else self.sess_options_default
|
||||
self.preferred_format = preferred_format if preferred_format is not None else self.preferred_format_default
|
||||
self.cache_dir = Path(cache_dir) if cache_dir is not None else self._cache_dir_default
|
||||
self.model_format = preferred_format if preferred_format is not None else self._model_format_default
|
||||
if session is not None:
|
||||
self.session = session
|
||||
|
||||
def download(self) -> None:
|
||||
if not self.cached:
|
||||
@ -70,7 +66,7 @@ class InferenceModel(ABC):
|
||||
pass
|
||||
|
||||
def _download(self) -> None:
|
||||
ignore_patterns = [] if self.preferred_format == ModelFormat.ARMNN else ["*.armnn"]
|
||||
ignore_patterns = [] if self.model_format == ModelFormat.ARMNN else ["*.armnn"]
|
||||
snapshot_download(
|
||||
f"immich-app/{clean_name(self.model_name)}",
|
||||
cache_dir=self.cache_dir,
|
||||
@ -105,26 +101,11 @@ class InferenceModel(ABC):
|
||||
self.cache_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def _make_session(self, model_path: Path) -> ModelSession:
|
||||
if not model_path.is_file():
|
||||
onnx_path = model_path.with_suffix(".onnx")
|
||||
if not onnx_path.is_file():
|
||||
raise ValueError(f"Model path '{model_path}' does not exist")
|
||||
|
||||
log.warning(
|
||||
f"Could not find model path '{model_path}'. " f"Falling back to ONNX model path '{onnx_path}' instead.",
|
||||
)
|
||||
model_path = onnx_path
|
||||
|
||||
match model_path.suffix:
|
||||
case ".armnn":
|
||||
session = AnnSession(model_path)
|
||||
session: ModelSession = AnnSession(model_path)
|
||||
case ".onnx":
|
||||
session = ort.InferenceSession(
|
||||
model_path.as_posix(),
|
||||
sess_options=self.sess_options,
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
)
|
||||
session = OrtSession(model_path)
|
||||
case _:
|
||||
raise ValueError(f"Unsupported model file type: {model_path.suffix}")
|
||||
return session
|
||||
@ -135,7 +116,7 @@ class InferenceModel(ABC):
|
||||
|
||||
@property
|
||||
def model_path(self) -> Path:
|
||||
return self.model_dir / f"model.{self.preferred_format}"
|
||||
return self.model_dir / f"model.{self.model_format}"
|
||||
|
||||
@property
|
||||
def model_task(self) -> ModelTask:
|
||||
@ -154,7 +135,7 @@ class InferenceModel(ABC):
|
||||
self._cache_dir = cache_dir
|
||||
|
||||
@property
|
||||
def cache_dir_default(self) -> Path:
|
||||
def _cache_dir_default(self) -> Path:
|
||||
return settings.cache_folder / self.model_task.value / self.model_name
|
||||
|
||||
@property
|
||||
@ -162,95 +143,18 @@ class InferenceModel(ABC):
|
||||
return self.model_path.is_file()
|
||||
|
||||
@property
|
||||
def providers(self) -> list[str]:
|
||||
return self._providers
|
||||
|
||||
@providers.setter
|
||||
def providers(self, providers: list[str]) -> None:
|
||||
log.info(
|
||||
(f"Setting '{self.model_name}' execution providers to {providers}, " "in descending order of preference"),
|
||||
)
|
||||
self._providers = providers
|
||||
|
||||
@property
|
||||
def providers_default(self) -> list[str]:
|
||||
available_providers = set(ort.get_available_providers())
|
||||
log.debug(f"Available ORT providers: {available_providers}")
|
||||
if (openvino := "OpenVINOExecutionProvider") in available_providers:
|
||||
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
|
||||
log.debug(f"Available OpenVINO devices: {device_ids}")
|
||||
|
||||
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
|
||||
if not gpu_devices:
|
||||
log.warning("No GPU device found in OpenVINO. Falling back to CPU.")
|
||||
available_providers.remove(openvino)
|
||||
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
|
||||
|
||||
@property
|
||||
def provider_options(self) -> list[dict[str, Any]]:
|
||||
return self._provider_options
|
||||
|
||||
@provider_options.setter
|
||||
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
|
||||
log.debug(f"Setting execution provider options to {provider_options}")
|
||||
self._provider_options = provider_options
|
||||
|
||||
@property
|
||||
def provider_options_default(self) -> list[dict[str, Any]]:
|
||||
options = []
|
||||
for provider in self.providers:
|
||||
match provider:
|
||||
case "CPUExecutionProvider" | "CUDAExecutionProvider":
|
||||
option = {"arena_extend_strategy": "kSameAsRequested"}
|
||||
case "OpenVINOExecutionProvider":
|
||||
option = {"device_type": "GPU_FP32", "cache_dir": (self.cache_dir / "openvino").as_posix()}
|
||||
case _:
|
||||
option = {}
|
||||
options.append(option)
|
||||
return options
|
||||
|
||||
@property
|
||||
def sess_options(self) -> ort.SessionOptions:
|
||||
return self._sess_options
|
||||
|
||||
@sess_options.setter
|
||||
def sess_options(self, sess_options: ort.SessionOptions) -> None:
|
||||
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
|
||||
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
|
||||
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
|
||||
self._sess_options = sess_options
|
||||
|
||||
@property
|
||||
def sess_options_default(self) -> ort.SessionOptions:
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.enable_cpu_mem_arena = False
|
||||
|
||||
# avoid thread contention between models
|
||||
if settings.model_inter_op_threads > 0:
|
||||
sess_options.inter_op_num_threads = settings.model_inter_op_threads
|
||||
# these defaults work well for CPU, but bottleneck GPU
|
||||
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
||||
sess_options.inter_op_num_threads = 1
|
||||
|
||||
if settings.model_intra_op_threads > 0:
|
||||
sess_options.intra_op_num_threads = settings.model_intra_op_threads
|
||||
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
||||
sess_options.intra_op_num_threads = 2
|
||||
|
||||
if sess_options.inter_op_num_threads > 1:
|
||||
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
|
||||
|
||||
return sess_options
|
||||
|
||||
@property
|
||||
def preferred_format(self) -> ModelFormat:
|
||||
def model_format(self) -> ModelFormat:
|
||||
return self._preferred_format
|
||||
|
||||
@preferred_format.setter
|
||||
def preferred_format(self, preferred_format: ModelFormat) -> None:
|
||||
@model_format.setter
|
||||
def model_format(self, preferred_format: ModelFormat) -> None:
|
||||
log.debug(f"Setting preferred format to {preferred_format}")
|
||||
self._preferred_format = preferred_format
|
||||
|
||||
@property
|
||||
def preferred_format_default(self) -> ModelFormat:
|
||||
return ModelFormat.ARMNN if ann.ann.is_available and settings.ann else ModelFormat.ONNX
|
||||
def _model_format_default(self) -> ModelFormat:
|
||||
prefer_ann = ann.ann.is_available and settings.ann
|
||||
ann_exists = (self.model_dir / "model.armnn").is_file()
|
||||
if prefer_ann and not ann_exists:
|
||||
log.warning(f"ARM NN is available, but '{self.model_name}' does not support ARM NN. Falling back to ONNX.")
|
||||
return ModelFormat.ARMNN if prefer_ann and ann_exists else ModelFormat.ONNX
|
||||
|
@ -3,7 +3,6 @@ from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnx
|
||||
import onnxruntime as ort
|
||||
from insightface.model_zoo import ArcFaceONNX
|
||||
from insightface.utils.face_align import norm_crop
|
||||
from numpy.typing import NDArray
|
||||
@ -13,7 +12,8 @@ from PIL import Image
|
||||
from app.config import clean_name, log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelSession, ModelTask, ModelType
|
||||
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType
|
||||
from app.sessions import has_batch_axis
|
||||
|
||||
|
||||
class FaceRecognizer(InferenceModel):
|
||||
@ -27,13 +27,14 @@ class FaceRecognizer(InferenceModel):
|
||||
cache_dir: Path | str | None = None,
|
||||
**model_kwargs: Any,
|
||||
) -> None:
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
super().__init__(clean_name(model_name), cache_dir, **model_kwargs)
|
||||
self.min_score = model_kwargs.pop("minScore", min_score)
|
||||
self.batch = self.model_format == ModelFormat.ONNX
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
session = self._make_session(self.model_path)
|
||||
if not self._has_batch_dim(session):
|
||||
self._add_batch_dim(self.model_path)
|
||||
if self.model_format == ModelFormat.ONNX and not has_batch_axis(session):
|
||||
self._add_batch_axis(self.model_path)
|
||||
session = self._make_session(self.model_path)
|
||||
self.model = ArcFaceONNX(
|
||||
self.model_path.with_suffix(".onnx").as_posix(),
|
||||
@ -47,9 +48,20 @@ class FaceRecognizer(InferenceModel):
|
||||
if faces["boxes"].shape[0] == 0:
|
||||
return []
|
||||
inputs = decode_cv2(inputs)
|
||||
embeddings: NDArray[np.float32] = self.model.get_feat(self._crop(inputs, faces))
|
||||
cropped_faces = self._crop(inputs, faces)
|
||||
embeddings = self._predict_batch(cropped_faces) if self.batch else self._predict_single(cropped_faces)
|
||||
return self.postprocess(faces, embeddings)
|
||||
|
||||
def _predict_batch(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
|
||||
embeddings: NDArray[np.float32] = self.model.get_feat(cropped_faces)
|
||||
return embeddings
|
||||
|
||||
def _predict_single(self, cropped_faces: list[NDArray[np.uint8]]) -> NDArray[np.float32]:
|
||||
embeddings: list[NDArray[np.float32]] = []
|
||||
for face in cropped_faces:
|
||||
embeddings.append(self.model.get_feat(face))
|
||||
return np.concatenate(embeddings, axis=0)
|
||||
|
||||
def postprocess(self, faces: FaceDetectionOutput, embeddings: NDArray[np.float32]) -> FacialRecognitionOutput:
|
||||
return [
|
||||
{
|
||||
@ -63,11 +75,8 @@ class FaceRecognizer(InferenceModel):
|
||||
def _crop(self, image: NDArray[np.uint8], faces: FaceDetectionOutput) -> list[NDArray[np.uint8]]:
|
||||
return [norm_crop(image, landmark) for landmark in faces["landmarks"]]
|
||||
|
||||
def _has_batch_dim(self, session: ort.InferenceSession) -> bool:
|
||||
return not isinstance(session, ort.InferenceSession) or session.get_inputs()[0].shape[0] == "batch"
|
||||
|
||||
def _add_batch_dim(self, model_path: Path) -> None:
|
||||
log.debug(f"Adding batch dimension to model {model_path}")
|
||||
def _add_batch_axis(self, model_path: Path) -> None:
|
||||
log.debug(f"Adding batch axis to model {model_path}")
|
||||
proto = onnx.load(model_path)
|
||||
static_input_dims = [shape.dim_value for shape in proto.graph.input[0].type.tensor_type.shape.dim[1:]]
|
||||
static_output_dims = [shape.dim_value for shape in proto.graph.output[0].type.tensor_type.shape.dim[1:]]
|
||||
|
@ -54,6 +54,14 @@ class ModelSource(StrEnum):
|
||||
ModelIdentity = tuple[ModelType, ModelTask]
|
||||
|
||||
|
||||
class SessionNode(Protocol):
|
||||
@property
|
||||
def name(self) -> str | None: ...
|
||||
|
||||
@property
|
||||
def shape(self) -> tuple[int, ...]: ...
|
||||
|
||||
|
||||
class ModelSession(Protocol):
|
||||
def run(
|
||||
self,
|
||||
@ -62,6 +70,10 @@ class ModelSession(Protocol):
|
||||
run_options: Any = None,
|
||||
) -> list[npt.NDArray[np.float32]]: ...
|
||||
|
||||
def get_inputs(self) -> list[SessionNode]: ...
|
||||
|
||||
def get_outputs(self) -> list[SessionNode]: ...
|
||||
|
||||
|
||||
class HasProfiling(Protocol):
|
||||
profiling: dict[str, float]
|
||||
|
5
machine-learning/app/sessions/__init__.py
Normal file
5
machine-learning/app/sessions/__init__.py
Normal file
@ -0,0 +1,5 @@
|
||||
from app.schemas import ModelSession
|
||||
|
||||
|
||||
def has_batch_axis(session: ModelSession) -> bool:
|
||||
return not isinstance(session.get_inputs()[0].shape[0], int) or session.get_inputs()[0].shape[0] < 0
|
@ -7,6 +7,7 @@ import numpy as np
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from ann.ann import Ann
|
||||
from app.schemas import SessionNode
|
||||
|
||||
from ..config import log, settings
|
||||
|
||||
@ -16,27 +17,15 @@ class AnnSession:
|
||||
Wrapper for ANN to be drop-in replacement for ONNX session.
|
||||
"""
|
||||
|
||||
def __init__(self, model_path: Path):
|
||||
tuning_file = Path(settings.cache_folder) / "gpu-tuning.ann"
|
||||
with tuning_file.open(mode="a"):
|
||||
# make sure tuning file exists (without clearing contents)
|
||||
# once filled, the tuning file reduces the cost/time of the first
|
||||
# inference after model load by 10s of seconds
|
||||
pass
|
||||
self.ann = Ann(tuning_level=3, tuning_file=tuning_file.as_posix())
|
||||
log.info("Loading ANN model %s ...", model_path)
|
||||
cache_file = model_path.with_suffix(".anncache")
|
||||
save = False
|
||||
if not cache_file.is_file():
|
||||
save = True
|
||||
with cache_file.open(mode="a"):
|
||||
# create empty model cache file
|
||||
pass
|
||||
def __init__(self, model_path: Path, cache_dir: Path = settings.cache_folder) -> None:
|
||||
self.model_path = model_path
|
||||
self.cache_dir = cache_dir
|
||||
self.ann = Ann(tuning_level=3, tuning_file=(cache_dir / "gpu-tuning.ann").as_posix())
|
||||
|
||||
log.info("Loading ANN model %s ...", model_path)
|
||||
self.model = self.ann.load(
|
||||
model_path.as_posix(),
|
||||
save_cached_network=save,
|
||||
cached_network_path=cache_file.as_posix(),
|
||||
cached_network_path=model_path.with_suffix(".anncache").as_posix(),
|
||||
)
|
||||
log.info("Loaded ANN model with ID %d", self.model)
|
||||
|
||||
@ -45,11 +34,11 @@ class AnnSession:
|
||||
log.info("Unloaded ANN model %d", self.model)
|
||||
self.ann.destroy()
|
||||
|
||||
def get_inputs(self) -> list[AnnNode]:
|
||||
def get_inputs(self) -> list[SessionNode]:
|
||||
shapes = self.ann.input_shapes[self.model]
|
||||
return [AnnNode(None, s) for s in shapes]
|
||||
|
||||
def get_outputs(self) -> list[AnnNode]:
|
||||
def get_outputs(self) -> list[SessionNode]:
|
||||
shapes = self.ann.output_shapes[self.model]
|
||||
return [AnnNode(None, s) for s in shapes]
|
||||
|
129
machine-learning/app/sessions/ort.py
Normal file
129
machine-learning/app/sessions/ort.py
Normal file
@ -0,0 +1,129 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from app.models.constants import SUPPORTED_PROVIDERS
|
||||
from app.schemas import SessionNode
|
||||
|
||||
from ..config import log, settings
|
||||
|
||||
|
||||
class OrtSession:
|
||||
def __init__(
|
||||
self,
|
||||
model_path: Path | str,
|
||||
providers: list[str] | None = None,
|
||||
provider_options: list[dict[str, Any]] | None = None,
|
||||
sess_options: ort.SessionOptions | None = None,
|
||||
):
|
||||
self.model_path = Path(model_path)
|
||||
self.providers = providers if providers is not None else self._providers_default
|
||||
self.provider_options = provider_options if provider_options is not None else self._provider_options_default
|
||||
self.sess_options = sess_options if sess_options is not None else self._sess_options_default
|
||||
self.session = ort.InferenceSession(
|
||||
self.model_path.as_posix(),
|
||||
providers=self.providers,
|
||||
provider_options=self.provider_options,
|
||||
sess_options=self.sess_options,
|
||||
)
|
||||
|
||||
def get_inputs(self) -> list[SessionNode]:
|
||||
inputs: list[SessionNode] = self.session.get_inputs()
|
||||
return inputs
|
||||
|
||||
def get_outputs(self) -> list[SessionNode]:
|
||||
outputs: list[SessionNode] = self.session.get_outputs()
|
||||
return outputs
|
||||
|
||||
def run(
|
||||
self,
|
||||
output_names: list[str] | None,
|
||||
input_feed: dict[str, NDArray[np.float32]] | dict[str, NDArray[np.int32]],
|
||||
run_options: Any = None,
|
||||
) -> list[NDArray[np.float32]]:
|
||||
outputs: list[NDArray[np.float32]] = self.session.run(output_names, input_feed, run_options)
|
||||
return outputs
|
||||
|
||||
@property
|
||||
def providers(self) -> list[str]:
|
||||
return self._providers
|
||||
|
||||
@providers.setter
|
||||
def providers(self, providers: list[str]) -> None:
|
||||
log.info(f"Setting execution providers to {providers}, in descending order of preference")
|
||||
self._providers = providers
|
||||
|
||||
@property
|
||||
def _providers_default(self) -> list[str]:
|
||||
available_providers = set(ort.get_available_providers())
|
||||
log.debug(f"Available ORT providers: {available_providers}")
|
||||
if (openvino := "OpenVINOExecutionProvider") in available_providers:
|
||||
device_ids: list[str] = ort.capi._pybind_state.get_available_openvino_device_ids()
|
||||
log.debug(f"Available OpenVINO devices: {device_ids}")
|
||||
|
||||
gpu_devices = [device_id for device_id in device_ids if device_id.startswith("GPU")]
|
||||
if not gpu_devices:
|
||||
log.warning("No GPU device found in OpenVINO. Falling back to CPU.")
|
||||
available_providers.remove(openvino)
|
||||
return [provider for provider in SUPPORTED_PROVIDERS if provider in available_providers]
|
||||
|
||||
@property
|
||||
def provider_options(self) -> list[dict[str, Any]]:
|
||||
return self._provider_options
|
||||
|
||||
@provider_options.setter
|
||||
def provider_options(self, provider_options: list[dict[str, Any]]) -> None:
|
||||
log.debug(f"Setting execution provider options to {provider_options}")
|
||||
self._provider_options = provider_options
|
||||
|
||||
@property
|
||||
def _provider_options_default(self) -> list[dict[str, Any]]:
|
||||
options = []
|
||||
for provider in self.providers:
|
||||
match provider:
|
||||
case "CPUExecutionProvider" | "CUDAExecutionProvider":
|
||||
option = {"arena_extend_strategy": "kSameAsRequested"}
|
||||
case "OpenVINOExecutionProvider":
|
||||
option = {"device_type": "GPU_FP32", "cache_dir": (self.model_path.parent / "openvino").as_posix()}
|
||||
case _:
|
||||
option = {}
|
||||
options.append(option)
|
||||
return options
|
||||
|
||||
@property
|
||||
def sess_options(self) -> ort.SessionOptions:
|
||||
return self._sess_options
|
||||
|
||||
@sess_options.setter
|
||||
def sess_options(self, sess_options: ort.SessionOptions) -> None:
|
||||
log.debug(f"Setting execution_mode to {sess_options.execution_mode.name}")
|
||||
log.debug(f"Setting inter_op_num_threads to {sess_options.inter_op_num_threads}")
|
||||
log.debug(f"Setting intra_op_num_threads to {sess_options.intra_op_num_threads}")
|
||||
self._sess_options = sess_options
|
||||
|
||||
@property
|
||||
def _sess_options_default(self) -> ort.SessionOptions:
|
||||
sess_options = ort.SessionOptions()
|
||||
sess_options.enable_cpu_mem_arena = False
|
||||
|
||||
# avoid thread contention between models
|
||||
if settings.model_inter_op_threads > 0:
|
||||
sess_options.inter_op_num_threads = settings.model_inter_op_threads
|
||||
# these defaults work well for CPU, but bottleneck GPU
|
||||
elif settings.model_inter_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
||||
sess_options.inter_op_num_threads = 1
|
||||
|
||||
if settings.model_intra_op_threads > 0:
|
||||
sess_options.intra_op_num_threads = settings.model_intra_op_threads
|
||||
elif settings.model_intra_op_threads == 0 and self.providers == ["CPUExecutionProvider"]:
|
||||
sess_options.intra_op_num_threads = 2
|
||||
|
||||
if sess_options.inter_op_num_threads > 1:
|
||||
sess_options.execution_mode = ort.ExecutionMode.ORT_PARALLEL
|
||||
|
||||
return sess_options
|
File diff suppressed because it is too large
Load Diff
@ -97,4 +97,4 @@ line-length = 120
|
||||
target-version = ['py311']
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
markers = ["providers"]
|
||||
markers = ["providers", "ov_device_ids"]
|
||||
|
Reference in New Issue
Block a user