blender/intern/cycles/kernel/geom/geom_triangle_intersect.h

738 lines
28 KiB
C
Raw Normal View History

/*
* Copyright 2014, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Triangle/Ray intersections.
*
* For BVH ray intersection we use a precomputed triangle storage to accelerate
* intersection at the cost of more memory usage.
*/
CCL_NAMESPACE_BEGIN
ccl_device_inline bool triangle_intersect(KernelGlobals *kg,
Intersection *isect,
float3 P,
float3 dir,
uint visibility,
int object,
int prim_addr)
{
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const ssef *ssef_verts = (ssef *)&kg->__prim_tri_verts.data[tri_vindex];
#else
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2);
#endif
float t, u, v;
if (ray_triangle_intersect(P,
dir,
isect->t,
#if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
ssef_verts,
#else
float4_to_float3(tri_a),
float4_to_float3(tri_b),
float4_to_float3(tri_c),
#endif
&u,
&v,
&t)) {
#ifdef __VISIBILITY_FLAG__
/* Visibility flag test. we do it here under the assumption
* that most triangles are culled by node flags.
*/
if (kernel_tex_fetch(__prim_visibility, prim_addr) & visibility)
#endif
{
isect->prim = prim_addr;
isect->object = object;
isect->type = PRIMITIVE_TRIANGLE;
isect->u = u;
isect->v = v;
isect->t = t;
return true;
}
}
return false;
}
#ifdef __KERNEL_AVX2__
# define cross256(A, B, C, D) _mm256_fmsub_ps(A, B, _mm256_mul_ps(C, D))
ccl_device_inline int ray_triangle_intersect8(KernelGlobals *kg,
float3 ray_P,
float3 ray_dir,
Intersection **isect,
uint visibility,
int object,
__m256 *triA,
__m256 *triB,
__m256 *triC,
int prim_addr,
int prim_num,
uint *num_hits,
uint max_hits,
int *num_hits_in_instance,
float isect_t)
{
const unsigned char prim_num_mask = (1 << prim_num) - 1;
const __m256i zero256 = _mm256_setzero_si256();
const __m256 Px256 = _mm256_set1_ps(ray_P.x);
const __m256 Py256 = _mm256_set1_ps(ray_P.y);
const __m256 Pz256 = _mm256_set1_ps(ray_P.z);
const __m256 dirx256 = _mm256_set1_ps(ray_dir.x);
const __m256 diry256 = _mm256_set1_ps(ray_dir.y);
const __m256 dirz256 = _mm256_set1_ps(ray_dir.z);
/* Calculate vertices relative to ray origin. */
__m256 v0_x_256 = _mm256_sub_ps(triC[0], Px256);
__m256 v0_y_256 = _mm256_sub_ps(triC[1], Py256);
__m256 v0_z_256 = _mm256_sub_ps(triC[2], Pz256);
__m256 v1_x_256 = _mm256_sub_ps(triA[0], Px256);
__m256 v1_y_256 = _mm256_sub_ps(triA[1], Py256);
__m256 v1_z_256 = _mm256_sub_ps(triA[2], Pz256);
__m256 v2_x_256 = _mm256_sub_ps(triB[0], Px256);
__m256 v2_y_256 = _mm256_sub_ps(triB[1], Py256);
__m256 v2_z_256 = _mm256_sub_ps(triB[2], Pz256);
__m256 v0_v1_x_256 = _mm256_add_ps(v0_x_256, v1_x_256);
__m256 v0_v1_y_256 = _mm256_add_ps(v0_y_256, v1_y_256);
__m256 v0_v1_z_256 = _mm256_add_ps(v0_z_256, v1_z_256);
__m256 v0_v2_x_256 = _mm256_add_ps(v0_x_256, v2_x_256);
__m256 v0_v2_y_256 = _mm256_add_ps(v0_y_256, v2_y_256);
__m256 v0_v2_z_256 = _mm256_add_ps(v0_z_256, v2_z_256);
__m256 v1_v2_x_256 = _mm256_add_ps(v1_x_256, v2_x_256);
__m256 v1_v2_y_256 = _mm256_add_ps(v1_y_256, v2_y_256);
__m256 v1_v2_z_256 = _mm256_add_ps(v1_z_256, v2_z_256);
/* Calculate triangle edges. */
__m256 e0_x_256 = _mm256_sub_ps(v2_x_256, v0_x_256);
__m256 e0_y_256 = _mm256_sub_ps(v2_y_256, v0_y_256);
__m256 e0_z_256 = _mm256_sub_ps(v2_z_256, v0_z_256);
__m256 e1_x_256 = _mm256_sub_ps(v0_x_256, v1_x_256);
__m256 e1_y_256 = _mm256_sub_ps(v0_y_256, v1_y_256);
__m256 e1_z_256 = _mm256_sub_ps(v0_z_256, v1_z_256);
__m256 e2_x_256 = _mm256_sub_ps(v1_x_256, v2_x_256);
__m256 e2_y_256 = _mm256_sub_ps(v1_y_256, v2_y_256);
__m256 e2_z_256 = _mm256_sub_ps(v1_z_256, v2_z_256);
/* Perform edge tests. */
/* cross (AyBz - AzBy, AzBx -AxBz, AxBy - AyBx) */
__m256 U_x_256 = cross256(v0_v2_y_256, e0_z_256, v0_v2_z_256, e0_y_256);
__m256 U_y_256 = cross256(v0_v2_z_256, e0_x_256, v0_v2_x_256, e0_z_256);
__m256 U_z_256 = cross256(v0_v2_x_256, e0_y_256, v0_v2_y_256, e0_x_256);
/* vertical dot */
__m256 U_256 = _mm256_mul_ps(U_x_256, dirx256);
U_256 = _mm256_fmadd_ps(U_y_256, diry256, U_256);
U_256 = _mm256_fmadd_ps(U_z_256, dirz256, U_256);
__m256 V_x_256 = cross256(v0_v1_y_256, e1_z_256, v0_v1_z_256, e1_y_256);
__m256 V_y_256 = cross256(v0_v1_z_256, e1_x_256, v0_v1_x_256, e1_z_256);
__m256 V_z_256 = cross256(v0_v1_x_256, e1_y_256, v0_v1_y_256, e1_x_256);
/* vertical dot */
__m256 V_256 = _mm256_mul_ps(V_x_256, dirx256);
V_256 = _mm256_fmadd_ps(V_y_256, diry256, V_256);
V_256 = _mm256_fmadd_ps(V_z_256, dirz256, V_256);
__m256 W_x_256 = cross256(v1_v2_y_256, e2_z_256, v1_v2_z_256, e2_y_256);
__m256 W_y_256 = cross256(v1_v2_z_256, e2_x_256, v1_v2_x_256, e2_z_256);
__m256 W_z_256 = cross256(v1_v2_x_256, e2_y_256, v1_v2_y_256, e2_x_256);
/* vertical dot */
__m256 W_256 = _mm256_mul_ps(W_x_256, dirx256);
W_256 = _mm256_fmadd_ps(W_y_256, diry256, W_256);
W_256 = _mm256_fmadd_ps(W_z_256, dirz256, W_256);
__m256i U_256_1 = _mm256_srli_epi32(_mm256_castps_si256(U_256), 31);
__m256i V_256_1 = _mm256_srli_epi32(_mm256_castps_si256(V_256), 31);
__m256i W_256_1 = _mm256_srli_epi32(_mm256_castps_si256(W_256), 31);
__m256i UVW_256_1 = _mm256_add_epi32(_mm256_add_epi32(U_256_1, V_256_1), W_256_1);
const __m256i one256 = _mm256_set1_epi32(1);
const __m256i two256 = _mm256_set1_epi32(2);
__m256i mask_minmaxUVW_256 = _mm256_or_si256(_mm256_cmpeq_epi32(one256, UVW_256_1),
_mm256_cmpeq_epi32(two256, UVW_256_1));
unsigned char mask_minmaxUVW_pos = _mm256_movemask_ps(_mm256_castsi256_ps(mask_minmaxUVW_256));
if ((mask_minmaxUVW_pos & prim_num_mask) == prim_num_mask) { //all bits set
return false;
}
/* Calculate geometry normal and denominator. */
__m256 Ng1_x_256 = cross256(e1_y_256, e0_z_256, e1_z_256, e0_y_256);
__m256 Ng1_y_256 = cross256(e1_z_256, e0_x_256, e1_x_256, e0_z_256);
__m256 Ng1_z_256 = cross256(e1_x_256, e0_y_256, e1_y_256, e0_x_256);
Ng1_x_256 = _mm256_add_ps(Ng1_x_256, Ng1_x_256);
Ng1_y_256 = _mm256_add_ps(Ng1_y_256, Ng1_y_256);
Ng1_z_256 = _mm256_add_ps(Ng1_z_256, Ng1_z_256);
/* vertical dot */
__m256 den_256 = _mm256_mul_ps(Ng1_x_256, dirx256);
den_256 = _mm256_fmadd_ps(Ng1_y_256, diry256, den_256);
den_256 = _mm256_fmadd_ps(Ng1_z_256, dirz256, den_256);
/* Perform depth test. */
__m256 T_256 = _mm256_mul_ps(Ng1_x_256, v0_x_256);
T_256 = _mm256_fmadd_ps(Ng1_y_256, v0_y_256, T_256);
T_256 = _mm256_fmadd_ps(Ng1_z_256, v0_z_256, T_256);
const __m256i c0x80000000 = _mm256_set1_epi32(0x80000000);
__m256i sign_den_256 = _mm256_and_si256(_mm256_castps_si256(den_256), c0x80000000);
__m256 sign_T_256 = _mm256_castsi256_ps(
_mm256_xor_si256(_mm256_castps_si256(T_256), sign_den_256));
unsigned char mask_sign_T = _mm256_movemask_ps(sign_T_256);
if (((mask_minmaxUVW_pos | mask_sign_T) & prim_num_mask) == prim_num_mask) {
return false;
}
__m256 xor_signmask_256 = _mm256_castsi256_ps(
_mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256));
ccl_align(32) float den8[8], U8[8], V8[8], T8[8], sign_T8[8], xor_signmask8[8];
ccl_align(32) unsigned int mask_minmaxUVW8[8];
if (visibility == PATH_RAY_SHADOW_OPAQUE) {
__m256i mask_final_256 = _mm256_cmpeq_epi32(mask_minmaxUVW_256, zero256);
__m256i maskden256 = _mm256_cmpeq_epi32(_mm256_castps_si256(den_256), zero256);
__m256i mask0 = _mm256_cmpgt_epi32(zero256, _mm256_castps_si256(sign_T_256));
__m256 rayt_256 = _mm256_set1_ps((*isect)->t);
__m256i mask1 = _mm256_cmpgt_epi32(
_mm256_castps_si256(sign_T_256),
_mm256_castps_si256(_mm256_mul_ps(
_mm256_castsi256_ps(_mm256_xor_si256(_mm256_castps_si256(den_256), sign_den_256)),
rayt_256)));
mask0 = _mm256_or_si256(mask1, mask0);
mask_final_256 = _mm256_andnot_si256(mask0, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask)
mask_final_256 = _mm256_andnot_si256(
maskden256, mask_final_256); //(~mask_minmaxUVW_pos) &(~mask) & (~maskden)
unsigned char mask_final = _mm256_movemask_ps(_mm256_castsi256_ps(mask_final_256));
if ((mask_final & prim_num_mask) == 0) {
return false;
}
const int i = __bsf(mask_final);
__m256 inv_den_256 = _mm256_rcp_ps(den_256);
U_256 = _mm256_mul_ps(U_256, inv_den_256);
V_256 = _mm256_mul_ps(V_256, inv_den_256);
T_256 = _mm256_mul_ps(T_256, inv_den_256);
_mm256_store_ps(U8, U_256);
_mm256_store_ps(V8, V_256);
_mm256_store_ps(T8, T_256);
/* NOTE: Here we assume visibility for all triangles in the node is
* the same. */
(*isect)->u = U8[i];
(*isect)->v = V8[i];
(*isect)->t = T8[i];
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
return true;
}
else {
_mm256_store_ps(den8, den_256);
_mm256_store_ps(U8, U_256);
_mm256_store_ps(V8, V_256);
_mm256_store_ps(T8, T_256);
_mm256_store_ps(sign_T8, sign_T_256);
_mm256_store_ps(xor_signmask8, xor_signmask_256);
_mm256_store_si256((__m256i *)mask_minmaxUVW8, mask_minmaxUVW_256);
int ret = false;
if (visibility == PATH_RAY_SHADOW) {
for (int i = 0; i < prim_num; i++) {
if (mask_minmaxUVW8[i]) {
continue;
}
# ifdef __VISIBILITY_FLAG__
if ((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
continue;
}
# endif
if ((sign_T8[i] < 0.0f) || (sign_T8[i] > (*isect)->t * xor_signmask8[i])) {
continue;
}
if (!den8[i]) {
continue;
}
const float inv_den = 1.0f / den8[i];
(*isect)->u = U8[i] * inv_den;
(*isect)->v = V8[i] * inv_den;
(*isect)->t = T8[i] * inv_den;
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
const int prim = kernel_tex_fetch(__prim_index, (*isect)->prim);
int shader = 0;
# ifdef __HAIR__
if (kernel_tex_fetch(__prim_type, (*isect)->prim) & PRIMITIVE_ALL_TRIANGLE)
# endif
{
shader = kernel_tex_fetch(__tri_shader, prim);
}
# ifdef __HAIR__
else {
float4 str = kernel_tex_fetch(__curves, prim);
shader = __float_as_int(str.z);
}
# endif
const int flag = kernel_tex_fetch(__shaders, (shader & SHADER_MASK)).flags;
/* If no transparent shadows, all light is blocked. */
if (!(flag & SD_HAS_TRANSPARENT_SHADOW)) {
return 2;
}
/* If maximum number of hits reached, block all light. */
else if (num_hits == NULL || *num_hits == max_hits) {
return 2;
}
/* Move on to next entry in intersections array. */
ret = true;
(*isect)++;
(*num_hits)++;
(*num_hits_in_instance)++;
(*isect)->t = isect_t;
}
}
else {
for (int i = 0; i < prim_num; i++) {
if (mask_minmaxUVW8[i]) {
continue;
}
# ifdef __VISIBILITY_FLAG__
if ((kernel_tex_fetch(__prim_visibility, (prim_addr + i)) & visibility) == 0) {
continue;
}
# endif
if ((sign_T8[i] < 0.0f) || (sign_T8[i] > (*isect)->t * xor_signmask8[i])) {
continue;
}
if (!den8[i]) {
continue;
}
const float inv_den = 1.0f / den8[i];
(*isect)->u = U8[i] * inv_den;
(*isect)->v = V8[i] * inv_den;
(*isect)->t = T8[i] * inv_den;
(*isect)->prim = (prim_addr + i);
(*isect)->object = object;
(*isect)->type = PRIMITIVE_TRIANGLE;
ret = true;
}
}
return ret;
}
}
ccl_device_inline int triangle_intersect8(KernelGlobals *kg,
Intersection **isect,
float3 P,
float3 dir,
uint visibility,
int object,
int prim_addr,
int prim_num,
uint *num_hits,
uint max_hits,
int *num_hits_in_instance,
float isect_t)
{
__m128 tri_a[8], tri_b[8], tri_c[8];
__m256 tritmp[12], tri[12];
__m256 triA[3], triB[3], triC[3];
int i, r;
uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
for (i = 0; i < prim_num; i++) {
tri_a[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
tri_b[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
tri_c[i] = *(__m128 *)&kg->__prim_tri_verts.data[tri_vindex++];
}
//create 9 or 12 placeholders
tri[0] = _mm256_castps128_ps256(tri_a[0]); //_mm256_zextps128_ps256
tri[1] = _mm256_castps128_ps256(tri_b[0]); //_mm256_zextps128_ps256
tri[2] = _mm256_castps128_ps256(tri_c[0]); //_mm256_zextps128_ps256
tri[3] = _mm256_castps128_ps256(tri_a[1]); //_mm256_zextps128_ps256
tri[4] = _mm256_castps128_ps256(tri_b[1]); //_mm256_zextps128_ps256
tri[5] = _mm256_castps128_ps256(tri_c[1]); //_mm256_zextps128_ps256
tri[6] = _mm256_castps128_ps256(tri_a[2]); //_mm256_zextps128_ps256
tri[7] = _mm256_castps128_ps256(tri_b[2]); //_mm256_zextps128_ps256
tri[8] = _mm256_castps128_ps256(tri_c[2]); //_mm256_zextps128_ps256
if (prim_num > 3) {
tri[9] = _mm256_castps128_ps256(tri_a[3]); //_mm256_zextps128_ps256
tri[10] = _mm256_castps128_ps256(tri_b[3]); //_mm256_zextps128_ps256
tri[11] = _mm256_castps128_ps256(tri_c[3]); //_mm256_zextps128_ps256
}
for (i = 4, r = 0; i < prim_num; i++, r += 3) {
tri[r] = _mm256_insertf128_ps(tri[r], tri_a[i], 1);
tri[r + 1] = _mm256_insertf128_ps(tri[r + 1], tri_b[i], 1);
tri[r + 2] = _mm256_insertf128_ps(tri[r + 2], tri_c[i], 1);
}
//------------------------------------------------
//0! Xa0 Ya0 Za0 1 Xa4 Ya4 Za4 1
//1! Xb0 Yb0 Zb0 1 Xb4 Yb4 Zb4 1
//2! Xc0 Yc0 Zc0 1 Xc4 Yc4 Zc4 1
//3! Xa1 Ya1 Za1 1 Xa5 Ya5 Za5 1
//4! Xb1 Yb1 Zb1 1 Xb5 Yb5 Zb5 1
//5! Xc1 Yc1 Zc1 1 Xc5 Yc5 Zc5 1
//6! Xa2 Ya2 Za2 1 Xa6 Ya6 Za6 1
//7! Xb2 Yb2 Zb2 1 Xb6 Yb6 Zb6 1
//8! Xc2 Yc2 Zc2 1 Xc6 Yc6 Zc6 1
//9! Xa3 Ya3 Za3 1 Xa7 Ya7 Za7 1
//10! Xb3 Yb3 Zb3 1 Xb7 Yb7 Zb7 1
//11! Xc3 Yc3 Zc3 1 Xc7 Yc7 Zc7 1
//"transpose"
tritmp[0] = _mm256_unpacklo_ps(tri[0], tri[3]); //0! Xa0 Xa1 Ya0 Ya1 Xa4 Xa5 Ya4 Ya5
tritmp[1] = _mm256_unpackhi_ps(tri[0], tri[3]); //1! Za0 Za1 1 1 Za4 Za5 1 1
tritmp[2] = _mm256_unpacklo_ps(tri[6], tri[9]); //2! Xa2 Xa3 Ya2 Ya3 Xa6 Xa7 Ya6 Ya7
tritmp[3] = _mm256_unpackhi_ps(tri[6], tri[9]); //3! Za2 Za3 1 1 Za6 Za7 1 1
tritmp[4] = _mm256_unpacklo_ps(tri[1], tri[4]); //4! Xb0 Xb1 Yb0 Yb1 Xb4 Xb5 Yb4 Yb5
tritmp[5] = _mm256_unpackhi_ps(tri[1], tri[4]); //5! Zb0 Zb1 1 1 Zb4 Zb5 1 1
tritmp[6] = _mm256_unpacklo_ps(tri[7], tri[10]); //6! Xb2 Xb3 Yb2 Yb3 Xb6 Xb7 Yb6 Yb7
tritmp[7] = _mm256_unpackhi_ps(tri[7], tri[10]); //7! Zb2 Zb3 1 1 Zb6 Zb7 1 1
tritmp[8] = _mm256_unpacklo_ps(tri[2], tri[5]); //8! Xc0 Xc1 Yc0 Yc1 Xc4 Xc5 Yc4 Yc5
tritmp[9] = _mm256_unpackhi_ps(tri[2], tri[5]); //9! Zc0 Zc1 1 1 Zc4 Zc5 1 1
tritmp[10] = _mm256_unpacklo_ps(tri[8], tri[11]); //10! Xc2 Xc3 Yc2 Yc3 Xc6 Xc7 Yc6 Yc7
tritmp[11] = _mm256_unpackhi_ps(tri[8], tri[11]); //11! Zc2 Zc3 1 1 Zc6 Zc7 1 1
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
triA[0] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[0]),
_mm256_castps_pd(tritmp[2]))); // Xa0 Xa1 Xa2 Xa3 Xa4 Xa5 Xa6 Xa7
triA[1] = _mm256_castpd_ps(
_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[0]),
_mm256_castps_pd(tritmp[2]))); // Ya0 Ya1 Ya2 Ya3 Ya4 Ya5 Ya6 Ya7
triA[2] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[1]),
_mm256_castps_pd(tritmp[3]))); // Za0 Za1 Za2 Za3 Za4 Za5 Za6 Za7
triB[0] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[4]),
_mm256_castps_pd(tritmp[6]))); // Xb0 Xb1 Xb2 Xb3 Xb4 Xb5 Xb5 Xb7
triB[1] = _mm256_castpd_ps(
_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[4]),
_mm256_castps_pd(tritmp[6]))); // Yb0 Yb1 Yb2 Yb3 Yb4 Yb5 Yb5 Yb7
triB[2] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[5]),
_mm256_castps_pd(tritmp[7]))); // Zb0 Zb1 Zb2 Zb3 Zb4 Zb5 Zb5 Zb7
triC[0] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[8]),
_mm256_castps_pd(tritmp[10]))); //Xc0 Xc1 Xc2 Xc3 Xc4 Xc5 Xc6 Xc7
triC[1] = _mm256_castpd_ps(
_mm256_unpackhi_pd(_mm256_castps_pd(tritmp[8]),
_mm256_castps_pd(tritmp[10]))); //Yc0 Yc1 Yc2 Yc3 Yc4 Yc5 Yc6 Yc7
triC[2] = _mm256_castpd_ps(
_mm256_unpacklo_pd(_mm256_castps_pd(tritmp[9]),
_mm256_castps_pd(tritmp[11]))); //Zc0 Zc1 Zc2 Zc3 Zc4 Zc5 Zc6 Zc7
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int result = ray_triangle_intersect8(kg,
P,
dir,
isect,
visibility,
object,
triA,
triB,
triC,
prim_addr,
prim_num,
num_hits,
max_hits,
num_hits_in_instance,
isect_t);
return result;
}
#endif /* __KERNEL_AVX2__ */
/* Special ray intersection routines for subsurface scattering. In that case we
* only want to intersect with primitives in the same object, and if case of
* multiple hits we pick a single random primitive as the intersection point.
* Returns whether traversal should be stopped.
*/
#ifdef __BVH_LOCAL__
ccl_device_inline bool triangle_intersect_local(KernelGlobals *kg,
LocalIntersection *local_isect,
float3 P,
float3 dir,
int object,
int local_object,
int prim_addr,
float tmax,
uint *lcg_state,
int max_hits)
{
/* Only intersect with matching object, for instanced objects we
* already know we are only intersecting the right object. */
if (object == OBJECT_NONE) {
if (kernel_tex_fetch(__prim_object, prim_addr) != local_object) {
return false;
}
}
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, prim_addr);
# if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const ssef *ssef_verts = (ssef *)&kg->__prim_tri_verts.data[tri_vindex];
# else
const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0)),
tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1)),
tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2));
# endif
float t, u, v;
if (!ray_triangle_intersect(P,
dir,
tmax,
# if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
ssef_verts,
# else
tri_a,
tri_b,
tri_c,
# endif
&u,
&v,
&t)) {
return false;
}
/* If no actual hit information is requested, just return here. */
if (max_hits == 0) {
return true;
}
int hit;
if (lcg_state) {
/* Record up to max_hits intersections. */
for (int i = min(max_hits, local_isect->num_hits) - 1; i >= 0; --i) {
if (local_isect->hits[i].t == t) {
return false;
}
}
local_isect->num_hits++;
if (local_isect->num_hits <= max_hits) {
hit = local_isect->num_hits - 1;
}
else {
/* reservoir sampling: if we are at the maximum number of
* hits, randomly replace element or skip it */
hit = lcg_step_uint(lcg_state) % local_isect->num_hits;
if (hit >= max_hits)
return false;
}
}
else {
/* Record closest intersection only. */
if (local_isect->num_hits && t > local_isect->hits[0].t) {
return false;
}
hit = 0;
local_isect->num_hits = 1;
}
/* Record intersection. */
Intersection *isect = &local_isect->hits[hit];
isect->prim = prim_addr;
isect->object = object;
isect->type = PRIMITIVE_TRIANGLE;
isect->u = u;
isect->v = v;
isect->t = t;
/* Record geometric normal. */
# if defined(__KERNEL_SSE2__) && defined(__KERNEL_SSE__)
const float3 tri_a = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0)),
tri_b = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1)),
tri_c = float4_to_float3(kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2));
# endif
local_isect->Ng[hit] = normalize(cross(tri_b - tri_a, tri_c - tri_a));
return false;
}
#endif /* __BVH_LOCAL__ */
/* Refine triangle intersection to more precise hit point. For rays that travel
* far the precision is often not so good, this reintersects the primitive from
* a closer distance. */
/* Reintersections uses the paper:
*
* Tomas Moeller
* Fast, minimum storage ray/triangle intersection
* http://www.cs.virginia.edu/~gfx/Courses/2003/ImageSynthesis/papers/Acceleration/Fast%20MinimumStorage%20RayTriangle%20Intersection.pdf
*/
ccl_device_inline float3 triangle_refine(KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
#ifdef __INTERSECTION_REFINE__
if (isect->object != OBJECT_NONE) {
if (UNLIKELY(t == 0.0f)) {
return P;
}
# ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_itfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
# endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D * t);
D = normalize_len(D, &t);
}
P = P + D * t;
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, isect->prim);
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2);
float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z);
float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z);
float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z);
float3 qvec = cross(tvec, edge1);
float3 pvec = cross(D, edge2);
float det = dot(edge1, pvec);
if (det != 0.0f) {
/* If determinant is zero it means ray lies in the plane of
* the triangle. It is possible in theory due to watertight
* nature of triangle intersection. For such cases we simply
* don't refine intersection hoping it'll go all fine.
*/
float rt = dot(edge2, qvec) / det;
P = P + D * rt;
}
if (isect->object != OBJECT_NONE) {
# ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_tfm;
# else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
# endif
P = transform_point(&tfm, P);
}
return P;
#else
return P + D * t;
#endif
}
/* Same as above, except that isect->t is assumed to be in object space for
* instancing.
*/
ccl_device_inline float3 triangle_refine_local(KernelGlobals *kg,
ShaderData *sd,
const Intersection *isect,
const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
if (isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_itfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
#endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D);
D = normalize(D);
}
P = P + D * t;
#ifdef __INTERSECTION_REFINE__
const uint tri_vindex = kernel_tex_fetch(__prim_tri_index, isect->prim);
const float4 tri_a = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 0),
tri_b = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 1),
tri_c = kernel_tex_fetch(__prim_tri_verts, tri_vindex + 2);
float3 edge1 = make_float3(tri_a.x - tri_c.x, tri_a.y - tri_c.y, tri_a.z - tri_c.z);
float3 edge2 = make_float3(tri_b.x - tri_c.x, tri_b.y - tri_c.y, tri_b.z - tri_c.z);
float3 tvec = make_float3(P.x - tri_c.x, P.y - tri_c.y, P.z - tri_c.z);
float3 qvec = cross(tvec, edge1);
float3 pvec = cross(D, edge2);
float det = dot(edge1, pvec);
if (det != 0.0f) {
/* If determinant is zero it means ray lies in the plane of
* the triangle. It is possible in theory due to watertight
* nature of triangle intersection. For such cases we simply
* don't refine intersection hoping it'll go all fine.
*/
float rt = dot(edge2, qvec) / det;
P = P + D * rt;
}
#endif /* __INTERSECTION_REFINE__ */
if (isect->object != OBJECT_NONE) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_tfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
#endif
P = transform_point(&tfm, P);
}
return P;
}
CCL_NAMESPACE_END