blender/extern/solid/include/MT/Matrix3x3.h

377 lines
12 KiB
C
Raw Normal View History

/*
* SOLID - Software Library for Interference Detection
*
* Copyright (C) 2001-2003 Dtecta. All rights reserved.
*
* This library may be distributed under the terms of the Q Public License
* (QPL) as defined by Trolltech AS of Norway and appearing in the file
* LICENSE.QPL included in the packaging of this file.
*
* This library may be distributed and/or modified under the terms of the
* GNU General Public License (GPL) version 2 as published by the Free Software
* Foundation and appearing in the file LICENSE.GPL included in the
* packaging of this file.
*
* This library is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
* WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
*
* Commercial use or any other use of this library not covered by either
* the QPL or the GPL requires an additional license from Dtecta.
* Please contact info@dtecta.com for enquiries about the terms of commercial
* use of this library.
*/
#ifndef MATRIX3X3_H
#define MATRIX3X3_H
#include <cassert>
#include "Vector3.h"
#include "Quaternion.h"
namespace MT {
// Row-major 3x3 matrix
template <typename Scalar>
class Matrix3x3 {
public:
Matrix3x3() {}
template <typename Scalar2>
explicit Matrix3x3(const Scalar2 *m) { setValue(m); }
explicit Matrix3x3(const Quaternion<Scalar>& q) { setRotation(q); }
template <typename Scalar2>
Matrix3x3(const Scalar2& yaw, const Scalar2& pitch, const Scalar2& roll)
{
setEuler(yaw, pitch, roll);
}
template <typename Scalar2>
Matrix3x3(const Scalar2& xx, const Scalar2& xy, const Scalar2& xz,
const Scalar2& yx, const Scalar2& yy, const Scalar2& yz,
const Scalar2& zx, const Scalar2& zy, const Scalar2& zz)
{
setValue(xx, xy, xz,
yx, yy, yz,
zx, zy, zz);
}
Vector3<Scalar>& operator[](int i)
{
assert(0 <= i && i < 3);
return m_el[i];
}
const Vector3<Scalar>& operator[](int i) const
{
assert(0 <= i && i < 3);
return m_el[i];
}
Matrix3x3<Scalar>& operator*=(const Matrix3x3<Scalar>& m);
template <typename Scalar2>
void setValue(const Scalar2 *m)
{
m_el[0][0] = Scalar(m[0]);
m_el[1][0] = Scalar(m[1]);
m_el[2][0] = Scalar(m[2]);
m_el[0][1] = Scalar(m[4]);
m_el[1][1] = Scalar(m[5]);
m_el[2][1] = Scalar(m[6]);
m_el[0][2] = Scalar(m[8]);
m_el[1][2] = Scalar(m[9]);
m_el[2][2] = Scalar(m[10]);
}
template <typename Scalar2>
void setValue(const Scalar2& xx, const Scalar2& xy, const Scalar2& xz,
const Scalar2& yx, const Scalar2& yy, const Scalar2& yz,
const Scalar2& zx, const Scalar2& zy, const Scalar2& zz)
{
m_el[0][0] = Scalar(xx);
m_el[0][1] = Scalar(xy);
m_el[0][2] = Scalar(xz);
m_el[1][0] = Scalar(yx);
m_el[1][1] = Scalar(yy);
m_el[1][2] = Scalar(yz);
m_el[2][0] = Scalar(zx);
m_el[2][1] = Scalar(zy);
m_el[2][2] = Scalar(zz);
}
void setRotation(const Quaternion<Scalar>& q)
{
Scalar d = q.length2();
assert(d != Scalar(0.0));
Scalar s = Scalar(2.0) / d;
Scalar xs = q[0] * s, ys = q[1] * s, zs = q[2] * s;
Scalar wx = q[3] * xs, wy = q[3] * ys, wz = q[3] * zs;
Scalar xx = q[0] * xs, xy = q[0] * ys, xz = q[0] * zs;
Scalar yy = q[1] * ys, yz = q[1] * zs, zz = q[2] * zs;
setValue(Scalar(1.0) - (yy + zz), xy - wz, xz + wy,
xy + wz, Scalar(1.0) - (xx + zz), yz - wx,
xz - wy, yz + wx, Scalar(1.0) - (xx + yy));
}
template <typename Scalar2>
void setEuler(const Scalar2& yaw, const Scalar2& pitch, const Scalar2& roll)
{
Scalar cy(Scalar_traits<Scalar>::cos(yaw));
Scalar sy(Scalar_traits<Scalar>::sin(yaw));
Scalar cp(Scalar_traits<Scalar>::cos(pitch));
Scalar sp(Scalar_traits<Scalar>::sin(pitch));
Scalar cr(Scalar_traits<Scalar>::cos(roll));
Scalar sr(Scalar_traits<Scalar>::sin(roll));
Scalar cc = cy * cr;
Scalar cs = cy * sr;
Scalar sc = sy * cr;
Scalar ss = sy * sr;
setValue(cy * cp, -sc + sp * cs, ss - sp * cc,
sy * cp, cc + sp * ss, -cs + sp * sc,
-sp, cp * sr, cp * cr);
}
void setIdentity()
{
setValue(Scalar(1.0), Scalar(0.0), Scalar(0.0),
Scalar(0.0), Scalar(1.0), Scalar(0.0),
Scalar(0.0), Scalar(0.0), Scalar(1.0));
}
template <typename Scalar2>
void getValue(Scalar2 *m) const
{
m[0] = Scalar2(m_el[0][0]);
m[1] = Scalar2(m_el[1][0]);
m[2] = Scalar2(m_el[2][0]);
m[3] = Scalar2(0.0);
m[4] = Scalar2(m_el[0][1]);
m[5] = Scalar2(m_el[1][1]);
m[6] = Scalar2(m_el[2][1]);
m[7] = Scalar2(0.0);
m[8] = Scalar2(m_el[0][2]);
m[9] = Scalar2(m_el[1][2]);
m[10] = Scalar2(m_el[2][2]);
m[11] = Scalar2(0.0);
}
void getRotation(Quaternion<Scalar>& q) const
{
Scalar trace = m_el[0][0] + m_el[1][1] + m_el[2][2];
if (trace > Scalar(0.0))
{
Scalar s = Scalar_traits<Scalar>::sqrt(trace + Scalar(1.0));
q[3] = s * Scalar(0.5);
s = Scalar(0.5) / s;
q[0] = (m_el[2][1] - m_el[1][2]) * s;
q[1] = (m_el[0][2] - m_el[2][0]) * s;
q[2] = (m_el[1][0] - m_el[0][1]) * s;
}
else
{
int i = m_el[0][0] < m_el[1][1] ?
(m_el[1][1] < m_el[2][2] ? 2 : 1) :
(m_el[0][0] < m_el[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;
Scalar s = Scalar_traits<Scalar>::sqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + Scalar(1.0));
q[i] = s * Scalar(0.5);
s = Scalar(0.5) / s;
q[3] = (m_el[k][j] - m_el[j][k]) * s;
q[j] = (m_el[j][i] + m_el[i][j]) * s;
q[k] = (m_el[k][i] + m_el[i][k]) * s;
}
}
template <typename Scalar2>
void getEuler(Scalar2& yaw, Scalar2& pitch, Scalar2& roll) const
{
pitch = Scalar2(Scalar_traits<Scalar>::asin(-m_el[2][0]));
if (pitch < Scalar_traits<Scalar2>::TwoTimesPi())
{
if (pitch > Scalar_traits<Scalar2>::TwoTimesPi())
{
yaw = Scalar2(Scalar_traits<Scalar>::atan2(m_el[1][0], m_el[0][0]));
roll = Scalar2(Scalar_traits<Scalar>::atan2(m_el[2][1], m_el[2][2]));
}
else
{
yaw = Scalar2(-Scalar_traits<Scalar>::atan2(-m_el[0][1], m_el[0][2]));
roll = Scalar2(0.0);
}
}
else
{
yaw = Scalar2(Scalar_traits<Scalar>::atan2(-m_el[0][1], m_el[0][2]));
roll = Scalar2(0.0);
}
}
Vector3<Scalar> getScaling() const
{
return Vector3<Scalar>(m_el[0][0] * m_el[0][0] + m_el[1][0] * m_el[1][0] + m_el[2][0] * m_el[2][0],
m_el[0][1] * m_el[0][1] + m_el[1][1] * m_el[1][1] + m_el[2][1] * m_el[2][1],
m_el[0][2] * m_el[0][2] + m_el[1][2] * m_el[1][2] + m_el[2][2] * m_el[2][2]);
}
Matrix3x3<Scalar> scaled(const Vector3<Scalar>& s) const
{
return Matrix3x3<Scalar>(m_el[0][0] * s[0], m_el[0][1] * s[1], m_el[0][2] * s[2],
m_el[1][0] * s[0], m_el[1][1] * s[1], m_el[1][2] * s[2],
m_el[2][0] * s[0], m_el[2][1] * s[1], m_el[2][2] * s[2]);
}
Scalar determinant() const;
Matrix3x3<Scalar> adjoint() const;
Matrix3x3<Scalar> absolute() const;
Matrix3x3<Scalar> transpose() const;
Matrix3x3<Scalar> inverse() const;
Matrix3x3<Scalar> transposeTimes(const Matrix3x3<Scalar>& m) const;
Matrix3x3<Scalar> timesTranspose(const Matrix3x3<Scalar>& m) const;
Scalar tdot(int c, const Vector3<Scalar>& v) const
{
return m_el[0][c] * v[0] + m_el[1][c] * v[1] + m_el[2][c] * v[2];
}
protected:
Scalar cofac(int r1, int c1, int r2, int c2) const
{
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
Vector3<Scalar> m_el[3];
};
template <typename Scalar>
inline std::ostream&
operator<<(std::ostream& os, const Matrix3x3<Scalar>& m)
{
return os << m[0] << std::endl << m[1] << std::endl << m[2] << std::endl;
}
template <typename Scalar>
inline Matrix3x3<Scalar>&
Matrix3x3<Scalar>::operator*=(const Matrix3x3<Scalar>& m)
{
setValue(m.tdot(0, m_el[0]), m.tdot(1, m_el[0]), m.tdot(2, m_el[0]),
m.tdot(0, m_el[1]), m.tdot(1, m_el[1]), m.tdot(2, m_el[1]),
m.tdot(0, m_el[2]), m.tdot(1, m_el[2]), m.tdot(2, m_el[2]));
return *this;
}
template <typename Scalar>
inline Scalar
Matrix3x3<Scalar>::determinant() const
{
return triple((*this)[0], (*this)[1], (*this)[2]);
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::absolute() const
{
return Matrix3x3<Scalar>(
Scalar_traits<Scalar>::abs(m_el[0][0]), Scalar_traits<Scalar>::abs(m_el[0][1]), Scalar_traits<Scalar>::abs(m_el[0][2]),
Scalar_traits<Scalar>::abs(m_el[1][0]), Scalar_traits<Scalar>::abs(m_el[1][1]), Scalar_traits<Scalar>::abs(m_el[1][2]),
Scalar_traits<Scalar>::abs(m_el[2][0]), Scalar_traits<Scalar>::abs(m_el[2][1]), Scalar_traits<Scalar>::abs(m_el[2][2]));
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::transpose() const
{
return Matrix3x3<Scalar>(m_el[0][0], m_el[1][0], m_el[2][0],
m_el[0][1], m_el[1][1], m_el[2][1],
m_el[0][2], m_el[1][2], m_el[2][2]);
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::adjoint() const
{
return Matrix3x3<Scalar>(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::inverse() const
{
Vector3<Scalar> co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
Scalar det = (*this)[0].dot(co);
assert(det != Scalar(0.0));
Scalar s = Scalar(1.0) / det;
return Matrix3x3<Scalar>(co[0] * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
co[1] * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
co[2] * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::transposeTimes(const Matrix3x3<Scalar>& m) const
{
return Matrix3x3<Scalar>(
m_el[0][0] * m[0][0] + m_el[1][0] * m[1][0] + m_el[2][0] * m[2][0],
m_el[0][0] * m[0][1] + m_el[1][0] * m[1][1] + m_el[2][0] * m[2][1],
m_el[0][0] * m[0][2] + m_el[1][0] * m[1][2] + m_el[2][0] * m[2][2],
m_el[0][1] * m[0][0] + m_el[1][1] * m[1][0] + m_el[2][1] * m[2][0],
m_el[0][1] * m[0][1] + m_el[1][1] * m[1][1] + m_el[2][1] * m[2][1],
m_el[0][1] * m[0][2] + m_el[1][1] * m[1][2] + m_el[2][1] * m[2][2],
m_el[0][2] * m[0][0] + m_el[1][2] * m[1][0] + m_el[2][2] * m[2][0],
m_el[0][2] * m[0][1] + m_el[1][2] * m[1][1] + m_el[2][2] * m[2][1],
m_el[0][2] * m[0][2] + m_el[1][2] * m[1][2] + m_el[2][2] * m[2][2]);
}
template <typename Scalar>
inline Matrix3x3<Scalar>
Matrix3x3<Scalar>::timesTranspose(const Matrix3x3<Scalar>& m) const
{
return Matrix3x3<Scalar>(
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]),
m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2]));
}
template <typename Scalar>
inline Vector3<Scalar>
operator*(const Matrix3x3<Scalar>& m, const Vector3<Scalar>& v)
{
return Vector3<Scalar>(m[0].dot(v), m[1].dot(v), m[2].dot(v));
}
template <typename Scalar>
inline Vector3<Scalar>
operator*(const Vector3<Scalar>& v, const Matrix3x3<Scalar>& m)
{
return Vector3<Scalar>(m.tdot(0, v), m.tdot(1, v), m.tdot(2, v));
}
template <typename Scalar>
inline Matrix3x3<Scalar>
operator*(const Matrix3x3<Scalar>& m1, const Matrix3x3<Scalar>& m2)
{
return Matrix3x3<Scalar>(
m2.tdot(0, m1[0]), m2.tdot(1, m1[0]), m2.tdot(2, m1[0]),
m2.tdot(0, m1[1]), m2.tdot(1, m1[1]), m2.tdot(2, m1[1]),
m2.tdot(0, m1[2]), m2.tdot(1, m1[2]), m2.tdot(2, m1[2]));
}
}
#endif