2009-09-24 21:22:24 +00:00
|
|
|
/***************************************************************************
|
|
|
|
frames.cxx - description
|
|
|
|
-------------------------
|
|
|
|
begin : June 2006
|
|
|
|
copyright : (C) 2006 Erwin Aertbelien
|
|
|
|
email : firstname.lastname@mech.kuleuven.ac.be
|
|
|
|
|
|
|
|
History (only major changes)( AUTHOR-Description ) :
|
|
|
|
|
|
|
|
***************************************************************************
|
|
|
|
* This library is free software; you can redistribute it and/or *
|
|
|
|
* modify it under the terms of the GNU Lesser General Public *
|
|
|
|
* License as published by the Free Software Foundation; either *
|
|
|
|
* version 2.1 of the License, or (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This library is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU *
|
|
|
|
* Lesser General Public License for more details. *
|
|
|
|
* *
|
|
|
|
* You should have received a copy of the GNU Lesser General Public *
|
|
|
|
* License along with this library; if not, write to the Free Software *
|
2010-02-12 13:34:04 +00:00
|
|
|
* Foundation, Inc., 51 Franklin Street, *
|
|
|
|
* Fifth Floor, Boston, MA 02110-1301, USA. *
|
2009-09-24 21:22:24 +00:00
|
|
|
* *
|
|
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
#include "frames.hpp"
|
|
|
|
|
|
|
|
namespace KDL {
|
|
|
|
|
|
|
|
#ifndef KDL_INLINE
|
|
|
|
#include "frames.inl"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void Frame::Make4x4(double * d)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
int j;
|
|
|
|
for (i=0;i<3;i++) {
|
|
|
|
for (j=0;j<3;j++)
|
|
|
|
d[i*4+j]=M(i,j);
|
|
|
|
d[i*4+3] = p(i)/1000;
|
|
|
|
}
|
|
|
|
for (j=0;j<3;j++)
|
|
|
|
d[12+j] = 0.;
|
|
|
|
d[15] = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Frame Frame::DH_Craig1989(double a,double alpha,double d,double theta)
|
|
|
|
// returns Modified Denavit-Hartenberg parameters (According to Craig)
|
|
|
|
{
|
|
|
|
double ct,st,ca,sa;
|
|
|
|
ct = cos(theta);
|
|
|
|
st = sin(theta);
|
|
|
|
sa = sin(alpha);
|
|
|
|
ca = cos(alpha);
|
|
|
|
return Frame(Rotation(
|
|
|
|
ct, -st, 0,
|
|
|
|
st*ca, ct*ca, -sa,
|
|
|
|
st*sa, ct*sa, ca ),
|
|
|
|
Vector(
|
|
|
|
a, -sa*d, ca*d )
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
Frame Frame::DH(double a,double alpha,double d,double theta)
|
|
|
|
// returns Denavit-Hartenberg parameters (Non-Modified DH)
|
|
|
|
{
|
|
|
|
double ct,st,ca,sa;
|
|
|
|
ct = cos(theta);
|
|
|
|
st = sin(theta);
|
|
|
|
sa = sin(alpha);
|
|
|
|
ca = cos(alpha);
|
|
|
|
return Frame(Rotation(
|
|
|
|
ct, -st*ca, st*sa,
|
|
|
|
st, ct*ca, -ct*sa,
|
|
|
|
0, sa, ca ),
|
|
|
|
Vector(
|
|
|
|
a*ct, a*st, d )
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
double Vector2::Norm() const
|
|
|
|
{
|
|
|
|
double tmp0 = fabs(data[0]);
|
|
|
|
double tmp1 = fabs(data[1]);
|
|
|
|
if (tmp0 >= tmp1) {
|
|
|
|
if (tmp1 == 0)
|
|
|
|
return 0;
|
|
|
|
return tmp0*sqrt(1+sqr(tmp1/tmp0));
|
|
|
|
} else {
|
|
|
|
return tmp1*sqrt(1+sqr(tmp0/tmp1));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// makes v a unitvector and returns the norm of v.
|
|
|
|
// if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
|
|
|
|
// if this is not good, check the return value of this method.
|
|
|
|
double Vector2::Normalize(double eps) {
|
|
|
|
double v = this->Norm();
|
|
|
|
if (v < eps) {
|
|
|
|
*this = Vector2(1,0);
|
|
|
|
return v;
|
|
|
|
} else {
|
|
|
|
*this = (*this)/v;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// do some effort not to lose precision
|
|
|
|
double Vector::Norm() const
|
|
|
|
{
|
|
|
|
double tmp1;
|
|
|
|
double tmp2;
|
|
|
|
tmp1 = fabs(data[0]);
|
|
|
|
tmp2 = fabs(data[1]);
|
|
|
|
if (tmp1 >= tmp2) {
|
|
|
|
tmp2=fabs(data[2]);
|
|
|
|
if (tmp1 >= tmp2) {
|
|
|
|
if (tmp1 == 0) {
|
|
|
|
// only to everything exactly zero case, all other are handled correctly
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return tmp1*sqrt(1+sqr(data[1]/data[0])+sqr(data[2]/data[0]));
|
|
|
|
} else {
|
|
|
|
return tmp2*sqrt(1+sqr(data[0]/data[2])+sqr(data[1]/data[2]));
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
tmp1=fabs(data[2]);
|
|
|
|
if (tmp2 > tmp1) {
|
|
|
|
return tmp2*sqrt(1+sqr(data[0]/data[1])+sqr(data[2]/data[1]));
|
|
|
|
} else {
|
|
|
|
return tmp1*sqrt(1+sqr(data[0]/data[2])+sqr(data[1]/data[2]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// makes v a unitvector and returns the norm of v.
|
|
|
|
// if v is smaller than eps, Vector(1,0,0) is returned with norm 0.
|
|
|
|
// if this is not good, check the return value of this method.
|
|
|
|
double Vector::Normalize(double eps) {
|
|
|
|
double v = this->Norm();
|
|
|
|
if (v < eps) {
|
|
|
|
*this = Vector(1,0,0);
|
|
|
|
return v;
|
|
|
|
} else {
|
|
|
|
*this = (*this)/v;
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Equal(const Rotation& a,const Rotation& b,double eps) {
|
|
|
|
return (Equal(a.data[0],b.data[0],eps) &&
|
|
|
|
Equal(a.data[1],b.data[1],eps) &&
|
|
|
|
Equal(a.data[2],b.data[2],eps) &&
|
|
|
|
Equal(a.data[3],b.data[3],eps) &&
|
|
|
|
Equal(a.data[4],b.data[4],eps) &&
|
|
|
|
Equal(a.data[5],b.data[5],eps) &&
|
|
|
|
Equal(a.data[6],b.data[6],eps) &&
|
|
|
|
Equal(a.data[7],b.data[7],eps) &&
|
|
|
|
Equal(a.data[8],b.data[8],eps) );
|
|
|
|
}
|
|
|
|
|
|
|
|
void Rotation::Ortho()
|
|
|
|
{
|
|
|
|
double n;
|
|
|
|
n=sqrt(sqr(data[0])+sqr(data[3])+sqr(data[6]));n=(n>1e-10)?1.0/n:0.0;data[0]*=n;data[3]*=n;data[6]*=n;
|
|
|
|
n=sqrt(sqr(data[1])+sqr(data[4])+sqr(data[7]));n=(n>1e-10)?1.0/n:0.0;data[1]*=n;data[4]*=n;data[7]*=n;
|
|
|
|
n=sqrt(sqr(data[2])+sqr(data[5])+sqr(data[8]));n=(n>1e-10)?1.0/n:0.0;data[2]*=n;data[5]*=n;data[8]*=n;
|
|
|
|
}
|
|
|
|
|
|
|
|
Rotation operator *(const Rotation& lhs,const Rotation& rhs)
|
|
|
|
// Complexity : 27M+27A
|
|
|
|
{
|
|
|
|
return Rotation(
|
|
|
|
lhs.data[0]*rhs.data[0]+lhs.data[1]*rhs.data[3]+lhs.data[2]*rhs.data[6],
|
|
|
|
lhs.data[0]*rhs.data[1]+lhs.data[1]*rhs.data[4]+lhs.data[2]*rhs.data[7],
|
|
|
|
lhs.data[0]*rhs.data[2]+lhs.data[1]*rhs.data[5]+lhs.data[2]*rhs.data[8],
|
|
|
|
lhs.data[3]*rhs.data[0]+lhs.data[4]*rhs.data[3]+lhs.data[5]*rhs.data[6],
|
|
|
|
lhs.data[3]*rhs.data[1]+lhs.data[4]*rhs.data[4]+lhs.data[5]*rhs.data[7],
|
|
|
|
lhs.data[3]*rhs.data[2]+lhs.data[4]*rhs.data[5]+lhs.data[5]*rhs.data[8],
|
|
|
|
lhs.data[6]*rhs.data[0]+lhs.data[7]*rhs.data[3]+lhs.data[8]*rhs.data[6],
|
|
|
|
lhs.data[6]*rhs.data[1]+lhs.data[7]*rhs.data[4]+lhs.data[8]*rhs.data[7],
|
|
|
|
lhs.data[6]*rhs.data[2]+lhs.data[7]*rhs.data[5]+lhs.data[8]*rhs.data[8]
|
|
|
|
);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Rotation Rotation::RPY(double roll,double pitch,double yaw)
|
|
|
|
{
|
|
|
|
double ca1,cb1,cc1,sa1,sb1,sc1;
|
|
|
|
ca1 = cos(yaw); sa1 = sin(yaw);
|
|
|
|
cb1 = cos(pitch);sb1 = sin(pitch);
|
|
|
|
cc1 = cos(roll);sc1 = sin(roll);
|
|
|
|
return Rotation(ca1*cb1,ca1*sb1*sc1 - sa1*cc1,ca1*sb1*cc1 + sa1*sc1,
|
|
|
|
sa1*cb1,sa1*sb1*sc1 + ca1*cc1,sa1*sb1*cc1 - ca1*sc1,
|
|
|
|
-sb1,cb1*sc1,cb1*cc1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Gives back a rotation matrix specified with RPY convention
|
|
|
|
void Rotation::GetRPY(double& roll,double& pitch,double& yaw) const
|
|
|
|
{
|
|
|
|
if (fabs(data[6]) > 1.0 - epsilon ) {
|
|
|
|
roll = -sign(data[6]) * atan2(data[1], data[4]);
|
|
|
|
pitch= -sign(data[6]) * PI / 2;
|
|
|
|
yaw = 0.0 ;
|
|
|
|
} else {
|
|
|
|
roll = atan2(data[7], data[8]);
|
|
|
|
pitch = atan2(-data[6], sqrt( sqr(data[0]) +sqr(data[3]) ) );
|
|
|
|
yaw = atan2(data[3], data[0]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Rotation Rotation::EulerZYZ(double Alfa,double Beta,double Gamma) {
|
|
|
|
double sa,ca,sb,cb,sg,cg;
|
|
|
|
sa = sin(Alfa);ca = cos(Alfa);
|
|
|
|
sb = sin(Beta);cb = cos(Beta);
|
|
|
|
sg = sin(Gamma);cg = cos(Gamma);
|
|
|
|
return Rotation( ca*cb*cg-sa*sg, -ca*cb*sg-sa*cg, ca*sb,
|
|
|
|
sa*cb*cg+ca*sg, -sa*cb*sg+ca*cg, sa*sb,
|
|
|
|
-sb*cg , sb*sg, cb
|
|
|
|
);
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Rotation::GetEulerZYZ(double& alfa,double& beta,double& gamma) const {
|
|
|
|
if (fabs(data[6]) < epsilon ) {
|
|
|
|
alfa=0.0;
|
|
|
|
if (data[8]>0) {
|
|
|
|
beta = 0.0;
|
|
|
|
gamma= atan2(-data[1],data[0]);
|
|
|
|
} else {
|
|
|
|
beta = PI;
|
|
|
|
gamma= atan2(data[1],-data[0]);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
alfa=atan2(data[5], data[2]);
|
|
|
|
beta=atan2(sqrt( sqr(data[6]) +sqr(data[7]) ),data[8]);
|
|
|
|
gamma=atan2(data[7], -data[6]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Rotation Rotation::Rot(const Vector& rotaxis,double angle) {
|
|
|
|
// The formula is
|
|
|
|
// V.(V.tr) + st*[V x] + ct*(I-V.(V.tr))
|
|
|
|
// can be found by multiplying it with an arbitrary vector p
|
|
|
|
// and noting that this vector is rotated.
|
|
|
|
double ct = cos(angle);
|
|
|
|
double st = sin(angle);
|
|
|
|
double vt = 1-ct;
|
|
|
|
Vector rotvec = rotaxis;
|
|
|
|
rotvec.Normalize();
|
|
|
|
return Rotation(
|
|
|
|
ct + vt*rotvec(0)*rotvec(0),
|
|
|
|
-rotvec(2)*st + vt*rotvec(0)*rotvec(1),
|
|
|
|
rotvec(1)*st + vt*rotvec(0)*rotvec(2),
|
|
|
|
rotvec(2)*st + vt*rotvec(1)*rotvec(0),
|
|
|
|
ct + vt*rotvec(1)*rotvec(1),
|
|
|
|
-rotvec(0)*st + vt*rotvec(1)*rotvec(2),
|
|
|
|
-rotvec(1)*st + vt*rotvec(2)*rotvec(0),
|
|
|
|
rotvec(0)*st + vt*rotvec(2)*rotvec(1),
|
|
|
|
ct + vt*rotvec(2)*rotvec(2)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
Rotation Rotation::Rot2(const Vector& rotvec,double angle) {
|
|
|
|
// rotvec should be normalized !
|
|
|
|
// The formula is
|
|
|
|
// V.(V.tr) + st*[V x] + ct*(I-V.(V.tr))
|
|
|
|
// can be found by multiplying it with an arbitrary vector p
|
|
|
|
// and noting that this vector is rotated.
|
|
|
|
double ct = cos(angle);
|
|
|
|
double st = sin(angle);
|
|
|
|
double vt = 1-ct;
|
|
|
|
return Rotation(
|
|
|
|
ct + vt*rotvec(0)*rotvec(0),
|
|
|
|
-rotvec(2)*st + vt*rotvec(0)*rotvec(1),
|
|
|
|
rotvec(1)*st + vt*rotvec(0)*rotvec(2),
|
|
|
|
rotvec(2)*st + vt*rotvec(1)*rotvec(0),
|
|
|
|
ct + vt*rotvec(1)*rotvec(1),
|
|
|
|
-rotvec(0)*st + vt*rotvec(1)*rotvec(2),
|
|
|
|
-rotvec(1)*st + vt*rotvec(2)*rotvec(0),
|
|
|
|
rotvec(0)*st + vt*rotvec(2)*rotvec(1),
|
|
|
|
ct + vt*rotvec(2)*rotvec(2)
|
|
|
|
);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Vector Rotation::GetRot() const
|
|
|
|
// Returns a vector with the direction of the equiv. axis
|
|
|
|
// and its norm is angle
|
|
|
|
{
|
|
|
|
Vector axis = Vector((data[7]-data[5]),
|
|
|
|
(data[2]-data[6]),
|
|
|
|
(data[3]-data[1]) )/2;
|
|
|
|
|
|
|
|
double sa = axis.Norm();
|
|
|
|
double ca = (data[0]+data[4]+data[8]-1)/2.0;
|
|
|
|
double alfa;
|
|
|
|
if (sa > epsilon)
|
|
|
|
alfa = ::atan2(sa,ca)/sa;
|
|
|
|
else {
|
|
|
|
if (ca < 0.0) {
|
|
|
|
alfa = KDL::PI;
|
|
|
|
axis.data[0] = 0.0;
|
|
|
|
axis.data[1] = 0.0;
|
|
|
|
axis.data[2] = 0.0;
|
|
|
|
if (data[0] > 0.0) {
|
|
|
|
axis.data[0] = 1.0;
|
|
|
|
} else if (data[4] > 0.0) {
|
|
|
|
axis.data[1] = 1.0;
|
|
|
|
} else {
|
|
|
|
axis.data[2] = 1.0;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
alfa = 0.0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return axis * alfa;
|
|
|
|
}
|
|
|
|
|
|
|
|
Vector2 Rotation::GetXZRot() const
|
|
|
|
{
|
|
|
|
// [0,1,0] x Y
|
|
|
|
Vector2 axis(data[7], -data[1]);
|
|
|
|
double norm = axis.Normalize();
|
|
|
|
if (norm < epsilon) {
|
|
|
|
norm = (data[4] < 0.0) ? PI : 0.0;
|
|
|
|
} else {
|
|
|
|
norm = acos(data[4]);
|
|
|
|
}
|
|
|
|
return axis*norm;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/** Returns the rotation angle around the equiv. axis
|
|
|
|
* @param axis the rotation axis is returned in this variable
|
|
|
|
* @param eps : in the case of angle == 0 : rot axis is undefined and choosen
|
|
|
|
* to be +/- Z-axis
|
|
|
|
* in the case of angle == PI : 2 solutions, positive Z-component
|
|
|
|
* of the axis is choosen.
|
|
|
|
* @result returns the rotation angle (between [0..PI] )
|
|
|
|
* /todo :
|
|
|
|
* Check corresponding routines in rframes and rrframes
|
|
|
|
*/
|
|
|
|
double Rotation::GetRotAngle(Vector& axis,double eps) const {
|
|
|
|
double ca = (data[0]+data[4]+data[8]-1)/2.0;
|
|
|
|
if (ca>1-eps) {
|
|
|
|
// undefined choose the Z-axis, and angle 0
|
|
|
|
axis = Vector(0,0,1);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (ca < -1+eps) {
|
|
|
|
// two solutions, choose a positive Z-component of the axis
|
|
|
|
double z = sqrt( (data[8]+1)/2 );
|
|
|
|
double x = (data[2])/2/z;
|
|
|
|
double y = (data[5])/2/z;
|
|
|
|
axis = Vector( x,y,z );
|
|
|
|
return PI;
|
|
|
|
}
|
|
|
|
double angle = acos(ca);
|
|
|
|
double sa = sin(angle);
|
|
|
|
axis = Vector((data[7]-data[5])/2/sa,
|
|
|
|
(data[2]-data[6])/2/sa,
|
|
|
|
(data[3]-data[1])/2/sa );
|
|
|
|
return angle;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool operator==(const Rotation& a,const Rotation& b) {
|
|
|
|
#ifdef KDL_USE_EQUAL
|
|
|
|
return Equal(a,b);
|
|
|
|
#else
|
|
|
|
return ( a.data[0]==b.data[0] &&
|
|
|
|
a.data[1]==b.data[1] &&
|
|
|
|
a.data[2]==b.data[2] &&
|
|
|
|
a.data[3]==b.data[3] &&
|
|
|
|
a.data[4]==b.data[4] &&
|
|
|
|
a.data[5]==b.data[5] &&
|
|
|
|
a.data[6]==b.data[6] &&
|
|
|
|
a.data[7]==b.data[7] &&
|
|
|
|
a.data[8]==b.data[8] );
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|