blender/intern/cycles/kernel/kernel_path_branched.h

570 lines
18 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#ifdef __BRANCHED_PATH__
ccl_device_inline void kernel_branched_path_ao(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
PathRadiance *L,
ccl_addr_space PathState *state,
float3 throughput)
{
int num_samples = kernel_data.integrator.ao_samples;
float num_samples_inv = 1.0f/num_samples;
float ao_factor = kernel_data.background.ao_factor;
float3 ao_N;
float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
float3 ao_alpha = shader_bsdf_alpha(kg, sd);
for(int j = 0; j < num_samples; j++) {
float bsdf_u, bsdf_v;
path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
2017-02-16 11:24:13 +00:00
if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
Ray light_ray;
float3 ao_shadow;
2017-02-16 11:24:13 +00:00
light_ray.P = ray_offset(sd->P, sd->Ng);
light_ray.D = ao_D;
light_ray.t = kernel_data.background.ao_distance;
2017-02-16 11:24:13 +00:00
light_ray.time = sd->time;
light_ray.dP = sd->dP;
light_ray.dD = differential3_zero();
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &ao_shadow)) {
path_radiance_accum_ao(L, state, throughput*num_samples_inv, ao_alpha, ao_bsdf, ao_shadow);
}
else {
path_radiance_accum_total_ao(L, state, throughput*num_samples_inv, ao_bsdf);
}
}
}
}
#ifndef __SPLIT_KERNEL__
/* bounce off surface and integrate indirect light */
ccl_device_noinline void kernel_branched_path_surface_indirect_light(KernelGlobals *kg,
ShaderData *sd, ShaderData *indirect_sd, ShaderData *emission_sd,
float3 throughput, float num_samples_adjust, PathState *state, PathRadiance *L)
{
float sum_sample_weight = 0.0f;
#ifdef __DENOISING_FEATURES__
if(state->denoising_feature_weight > 0.0f) {
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
/* transparency is not handled here, but in outer loop */
if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
continue;
}
sum_sample_weight += sc->sample_weight;
}
}
else {
sum_sample_weight = 1.0f;
}
#endif /* __DENOISING_FEATURES__ */
2017-02-16 11:24:13 +00:00
for(int i = 0; i < sd->num_closure; i++) {
const ShaderClosure *sc = &sd->closure[i];
/* transparency is not handled here, but in outer loop */
if(!CLOSURE_IS_BSDF(sc->type) || CLOSURE_IS_BSDF_TRANSPARENT(sc->type)) {
continue;
}
int num_samples;
if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
num_samples = kernel_data.integrator.diffuse_samples;
else if(CLOSURE_IS_BSDF_BSSRDF(sc->type))
num_samples = 1;
else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
num_samples = kernel_data.integrator.glossy_samples;
else
num_samples = kernel_data.integrator.transmission_samples;
num_samples = ceil_to_int(num_samples_adjust*num_samples);
float num_samples_inv = num_samples_adjust/num_samples;
for(int j = 0; j < num_samples; j++) {
PathState ps = *state;
float3 tp = throughput;
Ray bsdf_ray;
#ifdef __SHADOW_TRICKS__
float shadow_transparency = L->shadow_transparency;
#endif
ps.rng_hash = cmj_hash(state->rng_hash, i);
if(!kernel_branched_path_surface_bounce(kg,
sd,
sc,
j,
num_samples,
&tp,
&ps,
&L->state,
&bsdf_ray,
sum_sample_weight))
{
continue;
}
ps.rng_hash = state->rng_hash;
kernel_path_indirect(kg,
2016-08-25 10:33:07 +00:00
indirect_sd,
emission_sd,
&bsdf_ray,
tp*num_samples_inv,
&ps,
L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
#ifdef __SHADOW_TRICKS__
L->shadow_transparency = shadow_transparency;
#endif
}
}
}
#ifdef __SUBSURFACE__
ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
ShaderData *sd,
ShaderData *indirect_sd,
ShaderData *emission_sd,
PathRadiance *L,
PathState *state,
Ray *ray,
float3 throughput)
{
2017-02-16 11:24:13 +00:00
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSSRDF(sc->type))
continue;
/* set up random number generator */
uint lcg_state = lcg_state_init(state, 0x68bc21eb);
int num_samples = kernel_data.integrator.subsurface_samples;
float num_samples_inv = 1.0f/num_samples;
uint bssrdf_rng_hash = cmj_hash(state->rng_hash, i);
/* do subsurface scatter step with copy of shader data, this will
* replace the BSSRDF with a diffuse BSDF closure */
for(int j = 0; j < num_samples; j++) {
SubsurfaceIntersection ss_isect;
float bssrdf_u, bssrdf_v;
path_branched_rng_2D(kg, bssrdf_rng_hash, state, j, num_samples, PRNG_BSDF_U, &bssrdf_u, &bssrdf_v);
int num_hits = subsurface_scatter_multi_intersect(kg,
&ss_isect,
sd,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
true);
#ifdef __VOLUME__
Ray volume_ray = *ray;
bool need_update_volume_stack =
kernel_data.integrator.use_volumes &&
2017-02-16 11:24:13 +00:00
sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
#endif /* __VOLUME__ */
/* compute lighting with the BSDF closure */
for(int hit = 0; hit < num_hits; hit++) {
ShaderData bssrdf_sd = *sd;
subsurface_scatter_multi_setup(kg,
&ss_isect,
hit,
&bssrdf_sd,
state,
state->flag,
sc,
true);
PathState hit_state = *state;
path_state_branch(&hit_state, j, num_samples);
#ifdef __VOLUME__
if(need_update_volume_stack) {
/* Setup ray from previous surface point to the new one. */
float3 P = ray_offset(bssrdf_sd.P, -bssrdf_sd.Ng);
volume_ray.D = normalize_len(P - volume_ray.P,
&volume_ray.t);
kernel_volume_stack_update_for_subsurface(
kg,
emission_sd,
&volume_ray,
hit_state.volume_stack);
}
#endif /* __VOLUME__ */
#ifdef __EMISSION__
/* direct light */
if(kernel_data.integrator.use_direct_light) {
int all = (kernel_data.integrator.sample_all_lights_direct) ||
(state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(
kg,
&bssrdf_sd,
emission_sd,
&hit_state,
throughput,
num_samples_inv,
L,
all);
}
#endif /* __EMISSION__ */
/* indirect light */
kernel_branched_path_surface_indirect_light(
kg,
&bssrdf_sd,
2016-08-25 10:33:07 +00:00
indirect_sd,
emission_sd,
throughput,
num_samples_inv,
&hit_state,
L);
}
}
}
}
#endif /* __SUBSURFACE__ */
ccl_device void kernel_branched_path_integrate(KernelGlobals *kg,
uint rng_hash,
int sample,
Ray ray,
ccl_global float *buffer,
PathRadiance *L)
{
/* initialize */
float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
path_radiance_init(L, kernel_data.film.use_light_pass);
/* shader data memory used for both volumes and surfaces, saves stack space */
ShaderData sd;
/* shader data used by emission, shadows, volume stacks, indirect path */
ShaderData emission_sd, indirect_sd;
PathState state;
path_state_init(kg, &emission_sd, &state, rng_hash, sample, &ray);
/* Main Loop
* Here we only handle transparency intersections from the camera ray.
* Indirect bounces are handled in kernel_branched_path_surface_indirect_light().
*/
for(;;) {
/* Find intersection with objects in scene. */
Intersection isect;
bool hit = kernel_path_scene_intersect(kg, &state, &ray, &isect, L);
#ifdef __VOLUME__
Fix emissive volumes generates unexpected fireflies around intersections Discard the whole volume stack on the last bounce (but keep world volume if present). Volumes are expected to be closed manifol meshes, meaning if ray entered the volume there should be an intersection event of ray exisintg the volume. Case when ray hit nothing and there are still non-world volumes in the stack can happen in either of cases. 1. Mesh is not closed manifold. Such configurations are not really supported anyway and should not be used. Previous code would have consider the infinite length of the ray to sample across, so render result wasn't really correct anyway. 2. Exit intersection is more far away than the camera far clip distance. This case also will behave differently now, but previously it wasn't really correct either, so it's not like we're breaking something which was working as expected. 3. We missed exit event due to intersection precision issues. This is exact the case which this patch fixes and avoid fireflies. 4. Volume has Camera only visibility (all the rest visibility is set to off) This is what could be considered a regression but could be solved quite easily by checking volume stack's objects flags and keep entries which doesn't have Volume Scatter visibility (or even better: ensure Volume Scatter visibility for objects with volume closure), Fixes T46108: Cycles - Overlapping emissive volumes generates unexpected bright hotspots around the intersection Also fixes fireflies appearing on the edges of cube with emissive volue. Reviewers: juicyfruit, brecht Reviewed By: brecht Maniphest Tasks: T46108 Differential Revision: https://developer.blender.org/D2212
2016-09-08 15:07:58 +00:00
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state.volume_stack);
}
/* volume attenuation, emission, scatter */
if(state.volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = ray;
volume_ray.t = (hit)? isect.t: FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, state.volume_stack);
#ifdef __VOLUME_DECOUPLED__
/* decoupled ray marching only supported on CPU */
/* cache steps along volume for repeated sampling */
VolumeSegment volume_segment;
shader_setup_from_volume(kg, &sd, &volume_ray);
kernel_volume_decoupled_record(kg, &state,
&volume_ray, &sd, &volume_segment, heterogeneous);
/* direct light sampling */
if(volume_segment.closure_flag & SD_SCATTER) {
volume_segment.sampling_method = volume_stack_sampling_method(kg, state.volume_stack);
int all = kernel_data.integrator.sample_all_lights_direct;
kernel_branched_path_volume_connect_light(kg, &sd,
&emission_sd, throughput, &state, L, all,
&volume_ray, &volume_segment);
/* indirect light sampling */
int num_samples = kernel_data.integrator.volume_samples;
float num_samples_inv = 1.0f/num_samples;
for(int j = 0; j < num_samples; j++) {
PathState ps = state;
Ray pray = ray;
float3 tp = throughput;
/* branch RNG state */
path_state_branch(&ps, j, num_samples);
/* scatter sample. if we use distance sampling and take just one
* sample for direct and indirect light, we could share this
* computation, but makes code a bit complex */
float rphase = path_state_rng_1D(kg, &ps, PRNG_PHASE_CHANNEL);
float rscatter = path_state_rng_1D(kg, &ps, PRNG_SCATTER_DISTANCE);
VolumeIntegrateResult result = kernel_volume_decoupled_scatter(kg,
&ps, &pray, &sd, &tp, rphase, rscatter, &volume_segment, NULL, false);
if(result == VOLUME_PATH_SCATTERED &&
kernel_path_volume_bounce(kg,
&sd,
&tp,
&ps,
&L->state,
&pray))
{
kernel_path_indirect(kg,
&indirect_sd,
&emission_sd,
&pray,
tp*num_samples_inv,
&ps,
L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
}
}
}
/* emission and transmittance */
if(volume_segment.closure_flag & SD_EMISSION)
path_radiance_accum_emission(L, &state, throughput, volume_segment.accum_emission);
throughput *= volume_segment.accum_transmittance;
/* free cached steps */
kernel_volume_decoupled_free(kg, &volume_segment);
#else
/* GPU: no decoupled ray marching, scatter probalistically */
int num_samples = kernel_data.integrator.volume_samples;
float num_samples_inv = 1.0f/num_samples;
/* todo: we should cache the shader evaluations from stepping
* through the volume, for now we redo them multiple times */
for(int j = 0; j < num_samples; j++) {
PathState ps = state;
Ray pray = ray;
float3 tp = throughput * num_samples_inv;
/* branch RNG state */
path_state_branch(&ps, j, num_samples);
VolumeIntegrateResult result = kernel_volume_integrate(
kg, &ps, &sd, &volume_ray, L, &tp, heterogeneous);
#ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* todo: support equiangular, MIS and all light sampling.
* alternatively get decoupled ray marching working on the GPU */
kernel_path_volume_connect_light(kg, &sd, &emission_sd, tp, &state, L);
if(kernel_path_volume_bounce(kg,
&sd,
&tp,
&ps,
&L->state,
&pray))
{
kernel_path_indirect(kg,
&indirect_sd,
&emission_sd,
&pray,
tp,
&ps,
L);
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
}
}
#endif /* __VOLUME_SCATTER__ */
}
/* todo: avoid this calculation using decoupled ray marching */
kernel_volume_shadow(kg, &emission_sd, &state, &volume_ray, &throughput);
#endif /* __VOLUME_DECOUPLED__ */
}
#endif /* __VOLUME__ */
/* Shade background. */
if(!hit) {
kernel_path_background(kg, &state, &ray, throughput, &emission_sd, L);
break;
}
/* Setup and evaluate shader. */
shader_setup_from_ray(kg, &sd, &isect, &ray);
shader_eval_surface(kg, &sd, &state, state.flag);
shader_merge_closures(&sd);
/* Apply shadow catcher, holdout, emission. */
if(!kernel_path_shader_apply(kg,
&sd,
&state,
&ray,
throughput,
&emission_sd,
L,
buffer))
{
break;
}
/* transparency termination */
if(state.flag & PATH_RAY_TRANSPARENT) {
/* path termination. this is a strange place to put the termination, it's
* mainly due to the mixed in MIS that we use. gives too many unneeded
* shader evaluations, only need emission if we are going to terminate */
float probability = path_state_continuation_probability(kg, &state, throughput);
if(probability == 0.0f) {
break;
}
else if(probability != 1.0f) {
float terminate = path_state_rng_1D(kg, &state, PRNG_TERMINATE);
if(terminate >= probability)
break;
throughput /= probability;
}
}
kernel_update_denoising_features(kg, &sd, &state, L);
#ifdef __AO__
/* ambient occlusion */
if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
kernel_branched_path_ao(kg, &sd, &emission_sd, L, &state, throughput);
}
#endif /* __AO__ */
#ifdef __SUBSURFACE__
/* bssrdf scatter to a different location on the same object */
if(sd.flag & SD_BSSRDF) {
kernel_branched_path_subsurface_scatter(kg, &sd, &indirect_sd, &emission_sd,
L, &state, &ray, throughput);
}
#endif /* __SUBSURFACE__ */
if(!(sd.flag & SD_HAS_ONLY_VOLUME)) {
PathState hit_state = state;
#ifdef __EMISSION__
/* direct light */
if(kernel_data.integrator.use_direct_light) {
int all = (kernel_data.integrator.sample_all_lights_direct) ||
(state.flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg,
&sd, &emission_sd, &hit_state, throughput, 1.0f, L, all);
}
#endif /* __EMISSION__ */
/* indirect light */
kernel_branched_path_surface_indirect_light(kg,
&sd, &indirect_sd, &emission_sd, throughput, 1.0f, &hit_state, L);
/* continue in case of transparency */
throughput *= shader_bsdf_transparency(kg, &sd);
if(is_zero(throughput))
break;
}
/* Update Path State */
state.flag |= PATH_RAY_TRANSPARENT;
state.transparent_bounce++;
ray.P = ray_offset(sd.P, -sd.Ng);
ray.t -= sd.ray_length; /* clipping works through transparent */
#ifdef __RAY_DIFFERENTIALS__
ray.dP = sd.dP;
ray.dD.dx = -sd.dI.dx;
ray.dD.dy = -sd.dI.dy;
#endif /* __RAY_DIFFERENTIALS__ */
#ifdef __VOLUME__
/* enter/exit volume */
kernel_volume_stack_enter_exit(kg, &sd, state.volume_stack);
#endif /* __VOLUME__ */
}
}
ccl_device void kernel_branched_path_trace(KernelGlobals *kg,
ccl_global float *buffer,
int sample, int x, int y, int offset, int stride)
{
/* buffer offset */
int index = offset + x + y*stride;
int pass_stride = kernel_data.film.pass_stride;
buffer += index*pass_stride;
/* initialize random numbers and ray */
uint rng_hash;
Ray ray;
kernel_path_trace_setup(kg, sample, x, y, &rng_hash, &ray);
/* integrate */
PathRadiance L;
if(ray.t != 0.0f) {
kernel_branched_path_integrate(kg, rng_hash, sample, ray, buffer, &L);
kernel_write_result(kg, buffer, sample, &L);
}
}
#endif /* __SPLIT_KERNEL__ */
#endif /* __BRANCHED_PATH__ */
CCL_NAMESPACE_END