blender/intern/cycles/kernel/kernel_bvh.h

1174 lines
33 KiB
C
Raw Normal View History

/*
* Adapted from code Copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/*
* "Persistent while-while kernel" used in:
*
* "Understanding the Efficiency of Ray Traversal on GPUs",
* Timo Aila and Samuli Laine,
* Proc. High-Performance Graphics 2009
*/
/* bottom-most stack entry, indicating the end of traversal */
#define ENTRYPOINT_SENTINEL 0x76543210
/* 64 object BVH + 64 mesh BVH + 64 object node splitting */
#define BVH_STACK_SIZE 192
#define BVH_NODE_SIZE 4
#define TRI_NODE_SIZE 3
/* silly workaround for float extended precision that happens when compiling
2012-06-09 17:22:52 +00:00
* without sse support on x86, it results in different results for float ops
* that you would otherwise expect to compare correctly */
#if !defined(__i386__) || defined(__SSE__)
#define NO_EXTENDED_PRECISION
#else
#define NO_EXTENDED_PRECISION volatile
#endif
__device_inline float3 bvh_inverse_direction(float3 dir)
{
/* avoid divide by zero (ooeps = exp2f(-80.0f)) */
float ooeps = 0.00000000000000000000000082718061255302767487140869206996285356581211090087890625f;
float3 idir;
idir.x = 1.0f/((fabsf(dir.x) > ooeps)? dir.x: copysignf(ooeps, dir.x));
idir.y = 1.0f/((fabsf(dir.y) > ooeps)? dir.y: copysignf(ooeps, dir.y));
idir.z = 1.0f/((fabsf(dir.z) > ooeps)? dir.z: copysignf(ooeps, dir.z));
return idir;
}
__device_inline void bvh_instance_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
Transform tfm = object_fetch_transform(kg, object, OBJECT_INVERSE_TRANSFORM);
*P = transform_point(&tfm, ray->P);
float3 dir = transform_direction(&tfm, ray->D);
float len;
dir = normalize_len(dir, &len);
*idir = bvh_inverse_direction(dir);
if(*t != FLT_MAX)
*t *= len;
}
__device_inline void bvh_instance_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, const float tmax)
{
if(*t != FLT_MAX) {
Transform tfm = object_fetch_transform(kg, object, OBJECT_TRANSFORM);
*t *= len(transform_direction(&tfm, 1.0f/(*idir)));
}
*P = ray->P;
*idir = bvh_inverse_direction(ray->D);
}
#ifdef __OBJECT_MOTION__
__device_inline void bvh_instance_motion_push(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax)
{
Transform itfm;
*tfm = object_fetch_transform_motion_test(kg, object, ray->time, &itfm);
*P = transform_point(&itfm, ray->P);
float3 dir = transform_direction(&itfm, ray->D);
float len;
dir = normalize_len(dir, &len);
*idir = bvh_inverse_direction(dir);
if(*t != FLT_MAX)
*t *= len;
}
__device_inline void bvh_instance_motion_pop(KernelGlobals *kg, int object, const Ray *ray, float3 *P, float3 *idir, float *t, Transform *tfm, const float tmax)
{
if(*t != FLT_MAX)
*t *= len(transform_direction(tfm, 1.0f/(*idir)));
*P = ray->P;
*idir = bvh_inverse_direction(ray->D);
}
#endif
/* intersect two bounding boxes */
__device_inline void bvh_node_intersect(KernelGlobals *kg,
bool *traverseChild0, bool *traverseChild1,
bool *closestChild1, int *nodeAddr0, int *nodeAddr1,
float3 P, float3 idir, float t, uint visibility, int nodeAddr)
{
/* fetch node data */
float4 n0xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+0);
float4 n1xy = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+1);
float4 nz = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+2);
float4 cnodes = kernel_tex_fetch(__bvh_nodes, nodeAddr*BVH_NODE_SIZE+3);
/* intersect ray against child nodes */
float3 ood = P * idir;
NO_EXTENDED_PRECISION float c0lox = n0xy.x * idir.x - ood.x;
NO_EXTENDED_PRECISION float c0hix = n0xy.y * idir.x - ood.x;
NO_EXTENDED_PRECISION float c0loy = n0xy.z * idir.y - ood.y;
NO_EXTENDED_PRECISION float c0hiy = n0xy.w * idir.y - ood.y;
NO_EXTENDED_PRECISION float c0loz = nz.x * idir.z - ood.z;
NO_EXTENDED_PRECISION float c0hiz = nz.y * idir.z - ood.z;
NO_EXTENDED_PRECISION float c0min = max4(min(c0lox, c0hix), min(c0loy, c0hiy), min(c0loz, c0hiz), 0.0f);
NO_EXTENDED_PRECISION float c0max = min4(max(c0lox, c0hix), max(c0loy, c0hiy), max(c0loz, c0hiz), t);
NO_EXTENDED_PRECISION float c1loz = nz.z * idir.z - ood.z;
NO_EXTENDED_PRECISION float c1hiz = nz.w * idir.z - ood.z;
NO_EXTENDED_PRECISION float c1lox = n1xy.x * idir.x - ood.x;
NO_EXTENDED_PRECISION float c1hix = n1xy.y * idir.x - ood.x;
NO_EXTENDED_PRECISION float c1loy = n1xy.z * idir.y - ood.y;
NO_EXTENDED_PRECISION float c1hiy = n1xy.w * idir.y - ood.y;
NO_EXTENDED_PRECISION float c1min = max4(min(c1lox, c1hix), min(c1loy, c1hiy), min(c1loz, c1hiz), 0.0f);
NO_EXTENDED_PRECISION float c1max = min4(max(c1lox, c1hix), max(c1loy, c1hiy), max(c1loz, c1hiz), t);
/* decide which nodes to traverse next */
#ifdef __VISIBILITY_FLAG__
/* this visibility test gives a 5% performance hit, how to solve? */
*traverseChild0 = (c0max >= c0min) && (__float_as_int(cnodes.z) & visibility);
*traverseChild1 = (c1max >= c1min) && (__float_as_int(cnodes.w) & visibility);
#else
*traverseChild0 = (c0max >= c0min);
*traverseChild1 = (c1max >= c1min);
#endif
*nodeAddr0 = __float_as_int(cnodes.x);
*nodeAddr1 = __float_as_int(cnodes.y);
*closestChild1 = (c1min < c0min);
}
/* Sven Woop's algorithm */
__device_inline void bvh_triangle_intersect(KernelGlobals *kg, Intersection *isect,
float3 P, float3 idir, uint visibility, int object, int triAddr)
{
/* compute and check intersection t-value */
float4 v00 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+0);
float4 v11 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+1);
float3 dir = 1.0f/idir;
float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
float invDz = 1.0f/(dir.x*v00.x + dir.y*v00.y + dir.z*v00.z);
float t = Oz * invDz;
if(t > 0.0f && t < isect->t) {
/* compute and check barycentric u */
float Ox = v11.w + P.x*v11.x + P.y*v11.y + P.z*v11.z;
float Dx = dir.x*v11.x + dir.y*v11.y + dir.z*v11.z;
float u = Ox + t*Dx;
if(u >= 0.0f) {
/* compute and check barycentric v */
float4 v22 = kernel_tex_fetch(__tri_woop, triAddr*TRI_NODE_SIZE+2);
float Oy = v22.w + P.x*v22.x + P.y*v22.y + P.z*v22.z;
float Dy = dir.x*v22.x + dir.y*v22.y + dir.z*v22.z;
float v = Oy + t*Dy;
if(v >= 0.0f && u + v <= 1.0f) {
#ifdef __VISIBILITY_FLAG__
/* visibility flag test. we do it here under the assumption
2012-06-09 17:22:52 +00:00
* that most triangles are culled by node flags */
if(kernel_tex_fetch(__prim_visibility, triAddr) & visibility)
#endif
{
/* record intersection */
isect->prim = triAddr;
isect->object = object;
isect->u = u;
isect->v = v;
isect->t = t;
}
}
}
}
}
#ifdef __HAIR__
__device_inline void curvebounds(float *lower, float *upper, float *extremta, float *extrema, float *extremtb, float *extremb, float p0, float p1, float p2, float p3)
{
float halfdiscroot = (p2 * p2 - 3 * p3 * p1);
float ta = -1.0f;
float tb = -1.0f;
*extremta = -1.0f;
*extremtb = -1.0f;
*upper = p0;
*lower = p0 + p1 + p2 + p3;
*extrema = *upper;
*extremb = *lower;
if(*lower >= *upper) {
*upper = *lower;
*lower = p0;
}
if(halfdiscroot >= 0) {
halfdiscroot = sqrt(halfdiscroot);
ta = (-p2 - halfdiscroot) / (3 * p3);
tb = (-p2 + halfdiscroot) / (3 * p3);
}
float t2;
float t3;
if(ta > 0.0f && ta < 1.0f) {
t2 = ta * ta;
t3 = t2 * ta;
*extremta = ta;
*extrema = p3 * t3 + p2 * t2 + p1 * ta + p0;
if(*extrema > *upper) {
*upper = *extrema;
}
if(*extrema < *lower) {
*lower = *extrema;
}
}
if(tb > 0.0f && tb < 1.0f) {
t2 = tb * tb;
t3 = t2 * tb;
*extremtb = tb;
*extremb = p3 * t3 + p2 * t2 + p1 * tb + p0;
if(*extremb >= *upper) {
*upper = *extremb;
}
if(*extremb <= *lower) {
*lower = *extremb;
}
}
}
__device_inline void bvh_cardinal_curve_intersect(KernelGlobals *kg, Intersection *isect,
float3 P, float3 idir, uint visibility, int object, int curveAddr, int segment)
{
int depth = kernel_data.curve_kernel_data.subdivisions;
/* curve Intersection check */
float3 dir = 1.0f/idir;
int flags = kernel_data.curve_kernel_data.curveflags;
int prim = kernel_tex_fetch(__prim_index, curveAddr);
float3 curve_coef[4];
float r_st,r_en;
/*obtain curve parameters*/
{
/*ray transform created - this shold be created at beginning of intersection loop*/
Transform htfm;
float d = sqrtf(dir.x * dir.x + dir.z * dir.z);
htfm = make_transform(
dir.z / d, 0, -dir.x /d, 0,
-dir.x * dir.y /d, d, -dir.y * dir.z /d, 0,
dir.x, dir.y, dir.z, 0,
0, 0, 0, 1) * make_transform(
1, 0, 0, -P.x,
0, 1, 0, -P.y,
0, 0, 1, -P.z,
0, 0, 0, 1);
float4 v00 = kernel_tex_fetch(__curves, prim);
int k0 = __float_as_int(v00.x) + segment;
int k1 = k0 + 1;
int ka = max(k0 - 1,__float_as_int(v00.x));
int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
float4 P0 = kernel_tex_fetch(__curve_keys, ka);
float4 P1 = kernel_tex_fetch(__curve_keys, k0);
float4 P2 = kernel_tex_fetch(__curve_keys, k1);
float4 P3 = kernel_tex_fetch(__curve_keys, kb);
float3 p0 = transform_point(&htfm, float4_to_float3(P0));
float3 p1 = transform_point(&htfm, float4_to_float3(P1));
float3 p2 = transform_point(&htfm, float4_to_float3(P2));
float3 p3 = transform_point(&htfm, float4_to_float3(P3));
float fc = 0.71f;
curve_coef[0] = p1;
curve_coef[1] = -fc*p0 + fc*p2;
curve_coef[2] = 2.0f * fc * p0 + (fc - 3.0f) * p1 + (3.0f - 2.0f * fc) * p2 - fc * p3;
curve_coef[3] = -fc * p0 + (2.0f - fc) * p1 + (fc - 2.0f) * p2 + fc * p3;
r_st = P1.w;
r_en = P2.w;
}
float r_curr = max(r_st, r_en);
/*find bounds - this is slow for cubic curves*/
float upper,lower;
float xextrem[4];
curvebounds(&lower, &upper, &xextrem[0], &xextrem[1], &xextrem[2], &xextrem[3], curve_coef[0].x, curve_coef[1].x, curve_coef[2].x, curve_coef[3].x);
if(lower > r_curr || upper < -r_curr)
return;
float yextrem[4];
curvebounds(&lower, &upper, &yextrem[0], &yextrem[1], &yextrem[2], &yextrem[3], curve_coef[0].y, curve_coef[1].y, curve_coef[2].y, curve_coef[3].y);
if(lower > r_curr || upper < -r_curr)
return;
float zextrem[4];
curvebounds(&lower, &upper, &zextrem[0], &zextrem[1], &zextrem[2], &zextrem[3], curve_coef[0].z, curve_coef[1].z, curve_coef[2].z, curve_coef[3].z);
if(lower - r_curr > isect->t || upper + r_curr < 0.0f)
return;
/*setup recurrent loop*/
int level = 1 << depth;
int tree = 0;
float resol = 1.0f / (float)level;
/*begin loop*/
while(!(tree >> (depth))) {
float i_st = tree * resol;
float i_en = i_st + (level * resol);
float3 p_st = ((curve_coef[3] * i_st + curve_coef[2]) * i_st + curve_coef[1]) * i_st + curve_coef[0];
float3 p_en = ((curve_coef[3] * i_en + curve_coef[2]) * i_en + curve_coef[1]) * i_en + curve_coef[0];
float bminx = min(p_st.x, p_en.x);
float bmaxx = max(p_st.x, p_en.x);
float bminy = min(p_st.y, p_en.y);
float bmaxy = max(p_st.y, p_en.y);
float bminz = min(p_st.z, p_en.z);
float bmaxz = max(p_st.z, p_en.z);
if(xextrem[0] >= i_st && xextrem[0] <= i_en) {
bminx = min(bminx,xextrem[1]);
bmaxx = max(bmaxx,xextrem[1]);
}
if(xextrem[2] >= i_st && xextrem[2] <= i_en) {
bminx = min(bminx,xextrem[3]);
bmaxx = max(bmaxx,xextrem[3]);
}
if(yextrem[0] >= i_st && yextrem[0] <= i_en) {
bminy = min(bminy,yextrem[1]);
bmaxy = max(bmaxy,yextrem[1]);
}
if(yextrem[2] >= i_st && yextrem[2] <= i_en) {
bminy = min(bminy,yextrem[3]);
bmaxy = max(bmaxy,yextrem[3]);
}
if(zextrem[0] >= i_st && zextrem[0] <= i_en) {
bminz = min(bminz,zextrem[1]);
bmaxz = max(bmaxz,zextrem[1]);
}
if(zextrem[2] >= i_st && zextrem[2] <= i_en) {
bminz = min(bminz,zextrem[3]);
bmaxz = max(bmaxz,zextrem[3]);
}
float r1 = r_st + (r_en - r_st) * i_st;
float r2 = r_st + (r_en - r_st) * i_en;
r_curr = max(r1, r2);
if (bminz - r_curr > isect->t || bmaxz + r_curr < 0.0f|| bminx > r_curr || bmaxx < -r_curr || bminy > r_curr || bmaxy < -r_curr) {
/* the bounding box does not overlap the square centered at O.*/
tree += level;
level = tree & -tree;
}
else if (level == 1) {
/* the maximum recursion depth is reached.
* check if dP0.(Q-P0)>=0 and dPn.(Pn-Q)>=0.
* dP* is reversed if necessary.*/
float t = isect->t;
float u = 0.0f;
if(flags & CURVE_KN_RIBBONS) {
float3 tg = (p_en - p_st);
float w = tg.x * tg.x + tg.y * tg.y;
if (w == 0) {
tree++;
level = tree & -tree;
continue;
}
w = -(p_st.x * tg.x + p_st.y * tg.y) / w;
w = clamp((float)w, 0.0f, 1.0f);
/* compute u on the curve segment.*/
u = i_st * (1 - w) + i_en * w;
r_curr = r_st + (r_en - r_st) * u;
/* compare x-y distances.*/
float3 p_curr = ((curve_coef[3] * u + curve_coef[2]) * u + curve_coef[1]) * u + curve_coef[0];
float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
if (dot(tg, dp_st)< 0)
dp_st *= -1;
if (dot(dp_st, -p_st) + p_curr.z * dp_st.z < 0) {
tree++;
level = tree & -tree;
continue;
}
float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
if (dot(tg, dp_en) < 0)
dp_en *= -1;
if (dot(dp_en, p_en) - p_curr.z * dp_en.z < 0) {
tree++;
level = tree & -tree;
continue;
}
if (p_curr.x * p_curr.x + p_curr.y * p_curr.y >= r_curr * r_curr || p_curr.z <= 0.0f) {
tree++;
level = tree & -tree;
continue;
}
/* compare z distances.*/
if (isect->t < p_curr.z) {
tree++;
level = tree & -tree;
continue;
}
t = p_curr.z;
}
else {
float l = len(p_en - p_st);
float3 tg = (p_en - p_st) / l;
float gd = (r2 - r1) / l;
float difz = -dot(p_st,tg);
float cyla = 1.0f - (tg.z * tg.z * (1 + gd*gd));
float halfb = (-p_st.z - tg.z*(difz + gd*(difz*gd + r1)));
float tcentre = -halfb/cyla;
float zcentre = difz + (tg.z * tcentre);
float3 tdif = - p_st;
tdif.z += tcentre;
float tdifz = dot(tdif,tg);
float tb = 2*(tdif.z - tg.z*(tdifz + gd*(tdifz*gd + r1)));
float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - r1*r1 - 2*r1*tdifz*gd;
float td = tb*tb - 4*cyla*tc;
if (td < 0.0f){
tree++;
level = tree & -tree;
continue;
}
float rootd = sqrtf(td);
float correction = ((-tb - rootd)/(2*cyla));
t = tcentre + correction;
float w = (zcentre + (tg.z * correction))/l;
float3 dp_st = (3 * curve_coef[3] * i_st + 2 * curve_coef[2]) * i_st + curve_coef[1];
if (dot(tg, dp_st)< 0)
dp_st *= -1;
float3 dp_en = (3 * curve_coef[3] * i_en + 2 * curve_coef[2]) * i_en + curve_coef[1];
if (dot(tg, dp_en) < 0)
dp_en *= -1;
if(flags & CURVE_KN_BACKFACING && (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f)) {
correction = ((-tb + rootd)/(2*cyla));
t = tcentre + correction;
w = (zcentre + (tg.z * correction))/l;
}
if (dot(dp_st, -p_st) + t * dp_st.z < 0 || dot(dp_en, p_en) - t * dp_en.z < 0 || isect->t < t || t <= 0.0f) {
tree++;
level = tree & -tree;
continue;
}
w = clamp((float)w, 0.0f, 1.0f);
/* compute u on the curve segment.*/
u = i_st * (1 - w) + i_en * w;
}
/* we found a new intersection.*/
#ifdef __VISIBILITY_FLAG__
/* visibility flag test. we do it here under the assumption
* that most triangles are culled by node flags */
if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
#endif
{
/* record intersection */
isect->prim = curveAddr;
isect->segment = segment;
isect->object = object;
isect->u = u;
isect->v = 0.0f;
isect->t = t;
}
tree++;
level = tree & -tree;
}
else {
/* split the curve into two curves and process */
level = level >> 1;
}
}
}
__device_inline void bvh_curve_intersect(KernelGlobals *kg, Intersection *isect,
float3 P, float3 idir, uint visibility, int object, int curveAddr, int segment)
{
/* curve Intersection check */
int flags = kernel_data.curve_kernel_data.curveflags;
int prim = kernel_tex_fetch(__prim_index, curveAddr);
float4 v00 = kernel_tex_fetch(__curves, prim);
int k0 = __float_as_int(v00.x) + segment;
int k1 = k0 + 1;
float4 P1 = kernel_tex_fetch(__curve_keys, k0);
float4 P2 = kernel_tex_fetch(__curve_keys, k1);
float r1 = P1.w;
float r2 = P2.w;
float mr = max(r1,r2);
float3 p1 = float4_to_float3(P1);
float3 p2 = float4_to_float3(P2);
float3 dif = P - p1;
float3 dir = 1.0f/idir;
float l = len(p2 - p1);
float sp_r = mr + 0.5f * l;
float3 sphere_dif = P - ((p1 + p2) * 0.5f);
float sphere_b = dot(dir,sphere_dif);
sphere_dif = sphere_dif - sphere_b * dir;
sphere_b = dot(dir,sphere_dif);
float sdisc = sphere_b * sphere_b - len_squared(sphere_dif) + sp_r * sp_r;
if(sdisc < 0.0f)
return;
/* obtain parameters and test midpoint distance for suitable modes*/
float3 tg = (p2 - p1) / l;
float gd = (r2 - r1) / l;
float dirz = dot(dir,tg);
float difz = dot(dif,tg);
float a = 1.0f - (dirz*dirz*(1 + gd*gd));
float halfb = (dot(dir,dif) - dirz*(difz + gd*(difz*gd + r1)));
float tcentre = -halfb/a;
float zcentre = difz + (dirz * tcentre);
if((tcentre > isect->t) && !(flags & CURVE_KN_ACCURATE))
return;
if((zcentre < 0 || zcentre > l) && !(flags & CURVE_KN_ACCURATE) && !(flags & CURVE_KN_INTERSECTCORRECTION))
return;
/* test minimum separation*/
float3 cprod = cross(tg, dir);
float3 cprod2 = cross(tg, dif);
float cprodsq = len_squared(cprod);
float cprod2sq = len_squared(cprod2);
float distscaled = dot(cprod,dif);
if(cprodsq == 0)
distscaled = cprod2sq;
else
distscaled = (distscaled*distscaled)/cprodsq;
if(distscaled > mr*mr)
return;
/* calculate true intersection*/
float3 tdif = P - p1 + tcentre * dir;
float tdifz = dot(tdif,tg);
float tb = 2*(dot(dir,tdif) - dirz*(tdifz + gd*(tdifz*gd + r1)));
float tc = dot(tdif,tdif) - tdifz * tdifz * (1 + gd*gd) - r1*r1 - 2*r1*tdifz*gd;
float td = tb*tb - 4*a*tc;
if (td < 0.0f)
return;
float rootd = 0.0f;
float correction = 0.0f;
if(flags & CURVE_KN_ACCURATE) {
rootd = sqrtf(td);
correction = ((-tb - rootd)/(2*a));
}
float t = tcentre + correction;
if(t < isect->t) {
if(flags & CURVE_KN_INTERSECTCORRECTION) {
rootd = sqrtf(td);
correction = ((-tb - rootd)/(2*a));
t = tcentre + correction;
}
float z = zcentre + (dirz * correction);
bool backface = false;
if(flags & CURVE_KN_BACKFACING && (t < 0.0f || z < 0 || z > l)) {
backface = true;
correction = ((-tb + rootd)/(2*a));
t = tcentre + correction;
z = zcentre + (dirz * correction);
}
if(t > 0.0f && t < isect->t && z >= 0 && z <= l) {
if (flags & CURVE_KN_ENCLOSEFILTER) {
float enc_ratio = kernel_data.curve_kernel_data.encasing_ratio;
if((dot(P - p1, tg) > -r1 * enc_ratio) && (dot(P - p2, tg) < r2 * enc_ratio)) {
float a2 = 1.0f - (dirz*dirz*(1 + gd*gd*enc_ratio*enc_ratio));
float c2 = dot(dif,dif) - difz * difz * (1 + gd*gd*enc_ratio*enc_ratio) - r1*r1*enc_ratio*enc_ratio - 2*r1*difz*gd*enc_ratio;
if(a2*c2 < 0.0f)
return;
}
}
#ifdef __VISIBILITY_FLAG__
/* visibility flag test. we do it here under the assumption
* that most triangles are culled by node flags */
if(kernel_tex_fetch(__prim_visibility, curveAddr) & visibility)
#endif
{
/* record intersection */
isect->prim = curveAddr;
isect->segment = segment;
isect->object = object;
isect->u = z/l;
isect->v = td/(4*a*a);
isect->t = t;
if(backface)
isect->u = -isect->u;
}
}
}
}
#endif
__device bool bvh_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect)
{
/* traversal stack in CUDA thread-local memory */
int traversalStack[BVH_STACK_SIZE];
traversalStack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* ray parameters in registers */
const float tmax = ray->t;
float3 P = ray->P;
float3 idir = bvh_inverse_direction(ray->D);
int object = ~0;
isect->t = tmax;
isect->object = ~0;
isect->prim = ~0;
isect->u = 0.0f;
isect->v = 0.0f;
/* traversal loop */
do {
do
{
/* traverse internal nodes */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL)
{
bool traverseChild0, traverseChild1, closestChild1;
int nodeAddrChild1;
bvh_node_intersect(kg, &traverseChild0, &traverseChild1,
&closestChild1, &nodeAddr, &nodeAddrChild1,
P, idir, isect->t, visibility, nodeAddr);
if(traverseChild0 != traverseChild1) {
/* one child was intersected */
if(traverseChild1) {
nodeAddr = nodeAddrChild1;
}
}
else {
if(!traverseChild0) {
/* neither child was intersected */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
else {
/* both children were intersected, push the farther one */
if(closestChild1) {
int tmp = nodeAddr;
nodeAddr = nodeAddrChild1;
nodeAddrChild1 = tmp;
}
++stackPtr;
traversalStack[stackPtr] = nodeAddrChild1;
}
}
}
/* if node is leaf, fetch triangle list */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1));
int primAddr = __float_as_int(leaf.x);
#ifdef __INSTANCING__
if(primAddr >= 0) {
#endif
int primAddr2 = __float_as_int(leaf.y);
/* pop */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
/* primitive intersection */
while(primAddr < primAddr2) {
/* intersect ray against primitive */
#ifdef __HAIR__
uint segment = kernel_tex_fetch(__prim_segment, primAddr);
if(segment != ~0) {
if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_INTERPOLATE)
bvh_cardinal_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment);
else
bvh_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment);
}
else
#endif
bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr);
/* shadow ray early termination */
if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0)
return true;
primAddr++;
}
#ifdef __INSTANCING__
}
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
bvh_instance_push(kg, object, ray, &P, &idir, &isect->t, tmax);
++stackPtr;
traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
#endif
}
} while(nodeAddr != ENTRYPOINT_SENTINEL);
#ifdef __INSTANCING__
if(stackPtr >= 0) {
kernel_assert(object != ~0);
/* instance pop */
bvh_instance_pop(kg, object, ray, &P, &idir, &isect->t, tmax);
object = ~0;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
#endif
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return (isect->prim != ~0);
}
#ifdef __OBJECT_MOTION__
__device bool bvh_intersect_motion(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect)
{
/* traversal stack in CUDA thread-local memory */
int traversalStack[BVH_STACK_SIZE];
traversalStack[0] = ENTRYPOINT_SENTINEL;
/* traversal variables in registers */
int stackPtr = 0;
int nodeAddr = kernel_data.bvh.root;
/* ray parameters in registers */
const float tmax = ray->t;
float3 P = ray->P;
float3 idir = bvh_inverse_direction(ray->D);
int object = ~0;
Transform ob_tfm;
isect->t = tmax;
isect->object = ~0;
isect->prim = ~0;
isect->u = 0.0f;
isect->v = 0.0f;
/* traversal loop */
do {
do
{
/* traverse internal nodes */
while(nodeAddr >= 0 && nodeAddr != ENTRYPOINT_SENTINEL)
{
bool traverseChild0, traverseChild1, closestChild1;
int nodeAddrChild1;
bvh_node_intersect(kg, &traverseChild0, &traverseChild1,
&closestChild1, &nodeAddr, &nodeAddrChild1,
P, idir, isect->t, visibility, nodeAddr);
if(traverseChild0 != traverseChild1) {
/* one child was intersected */
if(traverseChild1) {
nodeAddr = nodeAddrChild1;
}
}
else {
if(!traverseChild0) {
/* neither child was intersected */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
else {
/* both children were intersected, push the farther one */
if(closestChild1) {
int tmp = nodeAddr;
nodeAddr = nodeAddrChild1;
nodeAddrChild1 = tmp;
}
++stackPtr;
traversalStack[stackPtr] = nodeAddrChild1;
}
}
}
/* if node is leaf, fetch triangle list */
if(nodeAddr < 0) {
float4 leaf = kernel_tex_fetch(__bvh_nodes, (-nodeAddr-1)*BVH_NODE_SIZE+(BVH_NODE_SIZE-1));
int primAddr = __float_as_int(leaf.x);
if(primAddr >= 0) {
int primAddr2 = __float_as_int(leaf.y);
/* pop */
nodeAddr = traversalStack[stackPtr];
--stackPtr;
/* primitive intersection */
while(primAddr < primAddr2) {
/* intersect ray against primitive */
#ifdef __HAIR__
uint segment = kernel_tex_fetch(__prim_segment, primAddr);
if(segment != ~0) {
if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_INTERPOLATE)
bvh_cardinal_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment);
else
bvh_curve_intersect(kg, isect, P, idir, visibility, object, primAddr, segment);
}
else
#endif
bvh_triangle_intersect(kg, isect, P, idir, visibility, object, primAddr);
/* shadow ray early termination */
if(visibility == PATH_RAY_SHADOW_OPAQUE && isect->prim != ~0)
return true;
primAddr++;
}
}
else {
/* instance push */
object = kernel_tex_fetch(__prim_object, -primAddr-1);
bvh_instance_motion_push(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax);
++stackPtr;
traversalStack[stackPtr] = ENTRYPOINT_SENTINEL;
nodeAddr = kernel_tex_fetch(__object_node, object);
}
}
} while(nodeAddr != ENTRYPOINT_SENTINEL);
if(stackPtr >= 0) {
kernel_assert(object != ~0);
/* instance pop */
bvh_instance_motion_pop(kg, object, ray, &P, &idir, &isect->t, &ob_tfm, tmax);
object = ~0;
nodeAddr = traversalStack[stackPtr];
--stackPtr;
}
} while(nodeAddr != ENTRYPOINT_SENTINEL);
return (isect->prim != ~0);
}
#endif
__device_inline bool scene_intersect(KernelGlobals *kg, const Ray *ray, const uint visibility, Intersection *isect)
{
#ifdef __OBJECT_MOTION__
if(kernel_data.bvh.have_motion)
return bvh_intersect_motion(kg, ray, visibility, isect);
else
return bvh_intersect(kg, ray, visibility, isect);
#else
return bvh_intersect(kg, ray, visibility, isect);
#endif
}
__device_inline float3 ray_offset(float3 P, float3 Ng)
{
#ifdef __INTERSECTION_REFINE__
const float epsilon_f = 1e-5f;
/* ideally this should match epsilon_f, but instancing/mblur
* precision makes it problematic */
const float epsilon_test = 1.0f;
const int epsilon_i = 32;
float3 res;
/* x component */
if(fabsf(P.x) < epsilon_test) {
res.x = P.x + Ng.x*epsilon_f;
}
else {
uint ix = __float_as_uint(P.x);
ix += ((ix ^ __float_as_uint(Ng.x)) >> 31)? -epsilon_i: epsilon_i;
res.x = __uint_as_float(ix);
}
/* y component */
if(fabsf(P.y) < epsilon_test) {
res.y = P.y + Ng.y*epsilon_f;
}
else {
uint iy = __float_as_uint(P.y);
iy += ((iy ^ __float_as_uint(Ng.y)) >> 31)? -epsilon_i: epsilon_i;
res.y = __uint_as_float(iy);
}
/* z component */
if(fabsf(P.z) < epsilon_test) {
res.z = P.z + Ng.z*epsilon_f;
}
else {
uint iz = __float_as_uint(P.z);
iz += ((iz ^ __float_as_uint(Ng.z)) >> 31)? -epsilon_i: epsilon_i;
res.z = __uint_as_float(iz);
}
return res;
#else
const float epsilon_f = 1e-4f;
return P + epsilon_f*Ng;
#endif
}
__device_inline float3 bvh_triangle_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray)
{
float3 P = ray->P;
float3 D = ray->D;
float t = isect->t;
#ifdef __INTERSECTION_REFINE__
if(isect->object != ~0) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_itfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
#endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D*t);
D = normalize_len(D, &t);
}
P = P + D*t;
float4 v00 = kernel_tex_fetch(__tri_woop, isect->prim*TRI_NODE_SIZE+0);
float Oz = v00.w - P.x*v00.x - P.y*v00.y - P.z*v00.z;
float invDz = 1.0f/(D.x*v00.x + D.y*v00.y + D.z*v00.z);
float rt = Oz * invDz;
P = P + D*rt;
if(isect->object != ~0) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_tfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
#endif
P = transform_point(&tfm, P);
}
return P;
#else
return P + D*t;
#endif
}
#ifdef __HAIR__
__device_inline float3 curvetangent(float t, float3 p0, float3 p1, float3 p2, float3 p3)
{
float fc = 0.71f;
float data[4];
float t2 = t * t;
data[0] = -3.0f * fc * t2 + 4.0f * fc * t - fc;
data[1] = 3.0f * (2.0f - fc) * t2 + 2.0f * (fc - 3.0f) * t;
data[2] = 3.0f * (fc - 2.0f) * t2 + 2.0f * (3.0f - 2.0f * fc) * t + fc;
data[3] = 3.0f * fc * t2 - 2.0f * fc * t;
return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
}
__device_inline float3 curvepoint(float t, float3 p0, float3 p1, float3 p2, float3 p3)
{
float data[4];
float fc = 0.71f;
float t2 = t * t;
float t3 = t2 * t;
data[0] = -fc * t3 + 2.0f * fc * t2 - fc * t;
data[1] = (2.0f - fc) * t3 + (fc - 3.0f) * t2 + 1.0f;
data[2] = (fc - 2.0f) * t3 + (3.0f - 2.0f * fc) * t2 + fc * t;
data[3] = fc * t3 - fc * t2;
return data[0] * p0 + data[1] * p1 + data[2] * p2 + data[3] * p3;
}
__device_inline float3 bvh_curve_refine(KernelGlobals *kg, ShaderData *sd, const Intersection *isect, const Ray *ray, float t)
{
int flag = kernel_data.curve_kernel_data.curveflags;
float3 P = ray->P;
float3 D = ray->D;
if(isect->object != ~0) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_itfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_INVERSE_TRANSFORM);
#endif
P = transform_point(&tfm, P);
D = transform_direction(&tfm, D*t);
D = normalize_len(D, &t);
}
int prim = kernel_tex_fetch(__prim_index, isect->prim);
float4 v00 = kernel_tex_fetch(__curves, prim);
int k0 = __float_as_int(v00.x) + isect->segment;
int k1 = k0 + 1;
float4 P1 = kernel_tex_fetch(__curve_keys, k0);
float4 P2 = kernel_tex_fetch(__curve_keys, k1);
float l = 1.0f;
float3 tg = normalize_len(float4_to_float3(P2 - P1),&l);
float r1 = P1.w;
float r2 = P2.w;
float gd = ((r2 - r1)/l);
P = P + D*t;
if(flag & CURVE_KN_INTERPOLATE) {
int ka = max(k0 - 1,__float_as_int(v00.x));
int kb = min(k1 + 1,__float_as_int(v00.x) + __float_as_int(v00.y) - 1);
float4 P0 = kernel_tex_fetch(__curve_keys, ka);
float4 P3 = kernel_tex_fetch(__curve_keys, kb);
float3 p[4];
p[0] = float4_to_float3(P0);
p[1] = float4_to_float3(P1);
p[2] = float4_to_float3(P2);
p[3] = float4_to_float3(P3);
tg = normalize(curvetangent(isect->u,p[0],p[1],p[2],p[3]));
float3 p_curr = curvepoint(isect->u,p[0],p[1],p[2],p[3]);
#ifdef __UV__
sd->u = isect->u;
sd->v = 0.0f;
#endif
if(kernel_data.curve_kernel_data.curveflags & CURVE_KN_RIBBONS)
sd->Ng = normalize(-(D - tg * (dot(tg,D))));
else {
sd->Ng = normalize(P - p_curr);
sd->Ng = sd->Ng - gd * tg;
sd->Ng = normalize(sd->Ng);
}
sd->N = sd->Ng;
}
else {
float3 dif = P - float4_to_float3(P1);
#ifdef __UV__
sd->u = dot(dif,tg)/l;
sd->v = 0.0f;
#endif
if (flag & CURVE_KN_TRUETANGENTGNORMAL) {
sd->Ng = -(D - tg * (dot(tg,D) * kernel_data.curve_kernel_data.normalmix));
sd->Ng = normalize(sd->Ng);
if (flag & CURVE_KN_NORMALCORRECTION) {
sd->Ng = sd->Ng - gd * tg;
sd->Ng = normalize(sd->Ng);
}
}
else {
sd->Ng = (dif - tg * sd->u * l) / (P1.w + sd->u * l * gd);
if (gd != 0.0f) {
sd->Ng = sd->Ng - gd * tg ;
sd->Ng = normalize(sd->Ng);
}
}
sd->N = sd->Ng;
if (flag & CURVE_KN_TANGENTGNORMAL && !(flag & CURVE_KN_TRUETANGENTGNORMAL)) {
sd->N = -(D - tg * (dot(tg,D) * kernel_data.curve_kernel_data.normalmix));
sd->N = normalize(sd->N);
if (flag & CURVE_KN_NORMALCORRECTION) {
sd->N = sd->N - gd * tg;
sd->N = normalize(sd->N);
}
}
if (!(flag & CURVE_KN_TANGENTGNORMAL) && flag & CURVE_KN_TRUETANGENTGNORMAL) {
sd->N = (dif - tg * sd->u * l) / (P1.w + sd->u * l * gd);
if (gd != 0.0f) {
sd->N = sd->N - gd * tg ;
sd->N = normalize(sd->N);
}
}
}
#ifdef __DPDU__
/* dPdu/dPdv */
sd->dPdu = tg;
sd->dPdv = cross(tg,sd->Ng);
#endif
if(isect->object != ~0) {
#ifdef __OBJECT_MOTION__
Transform tfm = sd->ob_tfm;
#else
Transform tfm = object_fetch_transform(kg, isect->object, OBJECT_TRANSFORM);
#endif
P = transform_point(&tfm, P);
}
return P;
}
#endif
CCL_NAMESPACE_END