- ignore MSVC warnings when FREE_WINDOWS is defined to quiet warnings.
- the CMake flags were not being set correctly making blender have weirdo colors (no -funsigned-char).
Previously the only way to detect if the mouse moved over a different object was to enable true-level-triggering and have a python script detect the change.
When the Pulse option is set, focusing on a different object pulses true.
Python attribute is focusSensor.usePulseFocus.
This is similar to the collision sensors pulse option where changes in the set of collision objects generates an event too.
Found this functionality missing when trying to make a logic demo that used mouse-over with overlapping objects.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
When enabled, this option converts any positive trigger from the sensor
into a pair of positive+negative trigger, with the negative trigger sent
in the next frame. The negative trigger from the sensor are not passed
to the controller as the option automatically generates the negative triggers.
From the controller point of view, the sensor is positive only for 1 frame,
even if the underlying sensor state remains positive.
The option interacts with the other sensor option in this way:
- Level option: tap option is mutually exclusive with level option. Both
cannot be enabled at the same time.
- Invert option: tap option operates on the negative trigger of the
sensor, which are converted to positive trigger by the invert option.
Hence, the controller will see the sensor positive for 1 frame when
the underlying sensor state turns negative.
- Positive pulse option: tap option adds a negative trigger after each
repeated positive pulse, unless the frequency option is 0, in which case
positive pulse are generated on every frame as before, as long as the
underlying sensor state is positive.
- Negative pulse option: this option is not compatible with tap option
and is ignored when tap option is enabled.
Notes:
- Keyboard "All keys" is handled specially when tap option is set:
There will be one pair of positive/negative trigger for each new
key press, regardless on how many keys are already pressed and there
is no trigger when keys are released, regardless if keys are still
pressed.
In case two keys are pressed in succesive frames, there will
be 2 positive triggers and 1 negative trigger in the following frame.
- fix for multiple viewpors broke single viewport (both work now)
- python could get uninitialized values from m_prevTargetPoint and m_prevSourcePoint
- getting the RayDirection for python could crash blender trying to normalize a zero length vector.
- added python attributes
- removed unused canvas from the MouseFocusSensor class
- Raised limit of 2 axis to 4 axis pairs (4==8 joysticks axis pairs)
- Added a new Joystick Sensor type "Single Axis", so you can detect horizontal or vertical movement, rather then just Up/Down/Left/Right
- added Python attribute "axisSingle" so you can get the value from the selected axis (rather then getting it out of the axis list)
- renamed Py attribute "axisPosition" to "axisValues" (was never in a release)
If we need to increase the axis limit again just change JOYAXIS_MAX and the button limits.
Notes:
* Sequence transform strip uses G.scene global, this is commented
out now, should be fixed.
* Etch-a-ton code was most difficult to merge. The files already in
2.5 got merged, but no new files were added. Calls to these files
are commented out with "XXX etch-a-ton". editarmature.c and
transform_snap.c were complex to merge. Martin, please check?
* Game engine compiles and links again here for scons/make/cmake
(player still fails to link).
Previously only the first collision would trigger an event (no collisions a negative event ofcourse)
With the Pulse option enabled, any change to the set of colliding objects will trigger an event.
Added this because there was no way to count how many sheep were on a platform in YoFrankie without running a script periodically.
Changes in collision are detected by comparing the number of objects colliding with the last event, as well as a hash made from the object pointers.
Also changed the touch sensors internal list of colliding objects to only contain objects that match the property or material.
- pulse isnt a great name, could change this.
Assorted smaller fixes:
- Fix: modal keymaps for editmode in view3d were not set again
when you copy areas or go fullscreen.
- Improved "redo last op" (F6) to search back in history for
a redoable operator. Operator also used wrong pupmenu type.
- On creating new FCurve editor, the channel rainbow colors are
set correct.
- EditMesh: fixed code for Spin/Screw, correct props, init and
error reporting. (Spin hotkey ALT+R temporary)
- recompiled all to check for uninitialized variable warnings.
(compile flag should be -O for this). Fixed some proto's.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r12987:17416
Issues:
* GHOST/X11 had conflicting changes. Some code was added in 2.5, which was
later added in trunk also, but reverted partially, specifically revision
16683. I have left out this reversion in the 2.5 branch since I think it is
needed there.
http://projects.blender.org/plugins/scmsvn/viewcvs.php?view=rev&root=bf-blender&revision=16683
* Scons had various conflicting changes, I decided to go with trunk version
for everything except priorities and some library renaming.
* In creator.c, there were various fixes and fixes for fixes related to the -w
-W and -p options. In 2.5 -w and -W is not coded yet, and -p is done
differently. Since this is changed so much, and I don't think those fixes
would be needed in 2.5, I've left them out.
* Also in creator.c: there was code for a python bugfix where the screen was not
initialized when running with -P. The code that initializes the screen there
I had to disable, that can't work in 2.5 anymore but left it commented as a
reminder.
Further I had to disable some new function calls. using src/ and python/, as
was done already in this branch, disabled function calls:
* bpath.c: error reporting
* BME_conversions.c: editmesh conversion functions.
* SHD_dynamic: disabled almost completely, there is no python/.
* KX_PythonInit.cpp and Ketsji/ build files: Mathutils is not there, disabled.
* text.c: clipboard copy call.
* object.c: OB_SUPPORT_MATERIAL.
* DerivedMesh.c and subsurf_ccg, stipple_quarttone.
Still to be done:
* Go over files and functions that were moved to a different location but could
still use changes that were done in trunk.
* use SDL events to trigger the sensor, trigger was being forced every tick. removed workaround for this problem.
* added "All Events" option, similar to all keys in the keyboard sensor.
This means every event from the joystick will trigger the sensor, however only events from the selected type (axis/button/hat) is used to set the positive state of the sensor.
* Added python function sens_joy.GetButtonValues(), returns a list of pressed button indicies.
* Removed pressed/released option for joystick buttons, it was the same as the invert option.
correct if there was more than one camera. It shoots rays from the
active camera, but used the viewport from whichever camera was drawn
last, now it uses the correct vieport.
without this, an incorrect sound path could cause scripts to to fail, making some functionality not work at all.
This also fixes a problem where samples would be loaded multiple times.
Introduction of a new Delay sensor that can be used to
generate positive and negative triggers at precise time,
expressed in number of frames.
The delay parameter defines the length of the initial
OFF period. A positive trigger is generated at the end
of this period. The duration parameter defines the
length of the ON period following the OFF period.
A negative trigger is generated at the end of the ON period.
If duration is 0, the sensor stays ON and there is no
negative trigger.
The sensor runs the OFF-ON cycle once unless the repeat
option is set: the OFF-ON cycle repeats indefinately
(or the OFF cycle if duration is 0).
The new generic SCA_ISensor::reset() Python function
can be used at any time to restart the sensor: the
current cycle is interrupted and no trigger is generated.
With this patch, only sensors that are connected to
active states are actually registered in the logic
manager. Inactive sensors won't take any CPU,
especially the Radar and Near sensors that use a
physical object for the detection: these objects
are removed from the physics engine.
To take advantage of this optimization patch, you
need to define very light idle state when the
objects are inactive: make them transparent, suspend
the physics, keep few sensors active (e,g a message
sensor to wake up), etc.
General
=======
- Removal of Damp option in motion actuator (replaced by
Servo control motion).
- No PyDoc at present, will be added soon.
Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an
event at the start of the game or when entering a state or at
object creation. The event will be positive or negative
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.
Servo control motion
====================
A new variant of the motion actuator allows to control speed
with force. The control if of type "PID" (Propotional, Integral,
Derivate): the force is automatically adapted to achieve the
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style:
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world
coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
coordinates of LinV). No limitation means that the force
will grow as large as necessary to achieve the target
speed along that axis. Set a max value to limit the
accelaration along an axis (slow start) and set a min
value (negative) to limit the brake force.
P: Proportional coefficient of servo controller, don't set
directly unless you know what you're doing.
I: Integral coefficient of servo controller. Use low value
(<0.1) for slow reaction (sliding), high values (>0.5)
for hard control. The P coefficient will be automatically
set to 60 times the I coefficient (a reasonable value).
D: Derivate coefficient. Leave to 0 unless you know what
you're doing. High values create instability.
Notes: - This actuator works perfectly in zero friction
environment: the PID controller will simulate friction
by applying force as needed.
- This actuator is compatible with simple Drot motion
actuator but not with LinV and Dloc motion.
- (0,0,0) is a valid target speed.
- All parameters are accessible through Python.
Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp: Time constant (in nb of frames) of distance and
orientation control.
Dist: Select to enable distance control and set target
distance. The object will be position at the given
distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be
detected.
N : Select to enable orientation control. The actuator will
change the orientation and the location of the object
so that it is parallel to the surface at the vertical
of the point of contact of the ray.
M/P : Select to enable material detection. Default is property
detection.
Property/Material: name of property/material that the target of
ray must have to be detected. If not set, property/
material filter is disabled and any collisioning object
within range will be detected.
PER : Select to enable persistent operation. Normally the
actuator disables itself automatically if the ray does
not reach a valid target.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
rotDamp: Time constant (in nb of frame) of orientation control.
0 : use Damp parameter.
>0: use a different time constant for orientation.
Notes: - If neither N nor Dist options are set, the actuator
does not change the position and orientation of the
object; it works as a ray sensor.
- The ray has no "X-ray" capability: if the first object
hit does not have the required property/material, it
returns no hit and the actuator disables itself unless
PER option is enabled.
- This actuator changes the position and orientation but
not the speed of the object. This has an important
implication in a gravity environment: the gravity will
cause the speed to increase although the object seems
to stay still (it is repositioned at each frame).
The gravity must be compensated in one way or another.
the new servo control motion actuator is the simplest
way: set the target speed along the ray axis to 0
and the servo control will automatically compensate
the gravity.
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is
placed BEFORE the Drot motion actuator (the order of
actuator is important)
- All parameters are accessible through Python.
Orientation constraint
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is placed
BEFORE the Drot motion actuator (the order of
actuator is important).
- This actuator doesn't change the location and speed.
It is compatible with gravity.
- All parameters are accessible through Python.
Actuator sensor
===============
This sensor detects the activation and deactivation of actuators
of the same object. The sensor generates a positive pulse when
the corresponding sensor is activated and a negative pulse when
it is deactivated (the contrary if the Inv option is selected).
This is mostly useful to chain actions and to detect the loss of
contact of the distance motion actuator.
Notes: - Actuators are disabled at the start of the game; if you
want to detect the On-Off transition of an actuator
after it has been activated at least once, unselect the
Lvl and Inv options and use a NAND controller.
- Some actuators deactivates themselves immediately after
being activated. The sensor detects this situation as
an On-Off transition.
- The actuator name can be set through Python.
Level option is now available on all sensors but is only implemented on
mouse and keyboard sensors. The purpose of that option is to make
the sensor react on level rather than edge by default. It's only
applicable to state engine system when there is a state transition:
the sensor will generate a pulse if the condition is met from the
start of the state. Normally, the keyboard sensor generate a pulse
only when the key is pressed and not when the key is already pressed.
This patch allows to select this behavior.
The second part of the patch corrects the reset method for sensors
with inverted output.
- default the m_edgecode to 65535, the wireframe was invisible. when is the edgecode available again ?
- added an extra condition, nearsensor is not yet working for bullet, but it crashed.
[SCons] Build with Solid as default when enabling the gameengine in the build process
[SCons] Build solid and qhull from the extern directory and link statically against them
That was about it.
There are a few things that needs double checking:
* Makefiles
* Projectfiles
* All the other systems than Linux and Windows on which the build (with scons) has been successfully tested.