Remove the last of the odd C++/python wrapper code from http://www.python.org/doc/PyCPP.html (~1998)
* Use python subclasses rather then having fake subclassing through get/set attributes calling parent types.
* PyObject getset arrays are created while initializing the types, converted from our own attribute arrays. This way python deals with subclasses and we dont have to define getattro or setattro functions for each type.
* GameObjects and Scenes no longer have attribute access to properties. only dictionary style access - ob['prop']
* remove each class's get/set/dir functions.
* remove isA() methods, can use PyObject_TypeCheck() in C and issubclass() in python.
* remove Parents[] array for each C++ class, was only used for isA() and wasnt correct in quite a few cases.
* remove PyTypeObject that was being passed as the last argument to each class (the parent classes too).
TODO -
* Light and VertexProxy need to be converted to using attributes.
* memory for getset arrays is never freed, not that bad since its will only allocates once.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
- Initialize python types with PyType_Ready, which adds methods to the type dictionary.
- use Pythons get/setattro (uses a python string for the attribute rather then char*). Using basic C strings seems nice but internally python converts them to python strings and discards them for most functions that accept char arrays.
- Method lookups use the PyTypes dictionary (should be faster then Py_FindMethod)
- Renamed __getattr -> py_base_getattro, _getattr -> py_getattro, __repr -> py_base_repr, py_delattro, py_getattro_self etc.
From here is possible to put all the parent classes methods into each python types dictionary to avoid nested lookups (api has 4 levels of lookups in some places), tested this but its not ready yet.
Simple tests for getting a method within a loop show this to be between 0.5 and 3.2x faster then using Py_FindMethod()
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.
Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
A new type of constraint actuator is available: Force field.
It provides a very similar service to the Fh material feature
but with some specificities:
- It is defined at the object level: each object can have
different settings and you don't need to use material.
- It can be applied in all 6 directions and not just -Z.
- It can be enabled/disabled easily (it's an actuator).
- You can have multiple force fields active at the same time
on the same object in different direction (think of a
space ship in a tunnel with a repulsive force field
on each wall).
- You can have a different damping for the rotation.
Besides that it provides the same dynamic behavior and the
parameters are self explanatory.
It works by adapting the linear and angular velocity: the
dynamic is independent of the mass. It is compatible with
all other motion actuators.
Note: linear and anysotropic friction is not yet implemented,
the only friction will come from the object damping parameters.
Support for friction will be added in a future revision.
Previously the distance constraint actuator was always working
in local axis. The local flag allows to cast the ray along a
world axis (when the flag is not selected).
The N flag works differently in this case: only the object
orientation is changed to be parallel to the normal at the hit
point.
The linear velocity is now changed so that the speed along the
ray axis is null. This eliminates the need to compensate the
gravity when casting along the Z axis.
rayCast(to,from,dist,prop,face,xray,poly):
The face paremeter determines the orientation of the normal:
0 or omitted => hit normal is always oriented towards the ray origin (as if you casted the ray from outside)
1 => hit normal is the real face normal (only for mesh object, otherwise face has no effect)
The ray has X-Ray capability if xray parameter is 1, otherwise the first object hit (other than self object) stops the ray.
The prop and xray parameters interact as follow:
prop off, xray off: return closest hit or no hit if there is no object on the full extend of the ray.
prop off, xray on : idem.
prop on, xray off: return closest hit if it matches prop, no hit otherwise.
prop on, xray on : return closest hit matching prop or no hit if there is no object matching prop on the full extend of the ray.
if poly is 0 or omitted, returns a 3-tuple with object reference, hit point and hit normal or (None,None,None) if no hit.
if poly is 1, returns a 4-tuple with in addition a KX_PolyProxy as 4th element.
The KX_PolyProxy object holds information on the polygon hit by the ray: the index of the vertex forming the poylgon, material, etc.
Attributes (read-only):
matname: The name of polygon material, empty if no material.
material: The material of the polygon
texture: The texture name of the polygon.
matid: The material index of the polygon, use this to retrieve vertex proxy from mesh proxy
v1: vertex index of the first vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v2: vertex index of the second vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v3: vertex index of the third vertex of the polygon, use this to retrieve vertex proxy from mesh proxy
v4: vertex index of the fourth vertex of the polygon, 0 if polygon has only 3 vertex
use this to retrieve vertex proxy from mesh proxy
visible: visible state of the polygon: 1=visible, 0=invisible
collide: collide state of the polygon: 1=receives collision, 0=collision free.
Methods:
getMaterialName(): Returns the polygon material name with MA prefix
getMaterial(): Returns the polygon material
getTextureName(): Returns the polygon texture name
getMaterialIndex(): Returns the material bucket index of the polygon.
getNumVertex(): Returns the number of vertex of the polygon.
isVisible(): Returns whether the polygon is visible or not
isCollider(): Returns whether the polygon is receives collision or not
getVertexIndex(vertex): Returns the mesh vertex index of a polygon vertex
getMesh(): Returns a mesh proxy
New methods of KX_MeshProxy have been implemented to retrieve KX_PolyProxy objects:
getNumPolygons(): Returns the number of polygon in the mesh.
getPolygon(index): Gets the specified polygon from the mesh.
More details in PyDoc.
The min/max parameters define a minimum/maximum angle
that the object axis can have with the reference
direction without being constrainted. The angle is
expressed in degree and is limited to 0-180 range.
The min/max parameters define a conical free zone
around the reference direction.
If the object axis is outside that free zone, the
actuator will tend to put it back using as a temporary
reference direction the vector that is exactly at
min or max degree of the reference direction
(depending if the axis angle is below the minimum
or above the maximum) and is located in the plane
formed by the axis and the reference direction.
With a low damping value, this is equivalent to
clamping the axis orientation within min/max degree
of the reference direction.
Backward compatibility corresponds to the absence
of free zone: min = max = 0.
General
=======
- Removal of Damp option in motion actuator (replaced by
Servo control motion).
- No PyDoc at present, will be added soon.
Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an
event at the start of the game or when entering a state or at
object creation. The event will be positive or negative
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.
Servo control motion
====================
A new variant of the motion actuator allows to control speed
with force. The control if of type "PID" (Propotional, Integral,
Derivate): the force is automatically adapted to achieve the
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style:
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world
coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
coordinates of LinV). No limitation means that the force
will grow as large as necessary to achieve the target
speed along that axis. Set a max value to limit the
accelaration along an axis (slow start) and set a min
value (negative) to limit the brake force.
P: Proportional coefficient of servo controller, don't set
directly unless you know what you're doing.
I: Integral coefficient of servo controller. Use low value
(<0.1) for slow reaction (sliding), high values (>0.5)
for hard control. The P coefficient will be automatically
set to 60 times the I coefficient (a reasonable value).
D: Derivate coefficient. Leave to 0 unless you know what
you're doing. High values create instability.
Notes: - This actuator works perfectly in zero friction
environment: the PID controller will simulate friction
by applying force as needed.
- This actuator is compatible with simple Drot motion
actuator but not with LinV and Dloc motion.
- (0,0,0) is a valid target speed.
- All parameters are accessible through Python.
Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp: Time constant (in nb of frames) of distance and
orientation control.
Dist: Select to enable distance control and set target
distance. The object will be position at the given
distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be
detected.
N : Select to enable orientation control. The actuator will
change the orientation and the location of the object
so that it is parallel to the surface at the vertical
of the point of contact of the ray.
M/P : Select to enable material detection. Default is property
detection.
Property/Material: name of property/material that the target of
ray must have to be detected. If not set, property/
material filter is disabled and any collisioning object
within range will be detected.
PER : Select to enable persistent operation. Normally the
actuator disables itself automatically if the ray does
not reach a valid target.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
rotDamp: Time constant (in nb of frame) of orientation control.
0 : use Damp parameter.
>0: use a different time constant for orientation.
Notes: - If neither N nor Dist options are set, the actuator
does not change the position and orientation of the
object; it works as a ray sensor.
- The ray has no "X-ray" capability: if the first object
hit does not have the required property/material, it
returns no hit and the actuator disables itself unless
PER option is enabled.
- This actuator changes the position and orientation but
not the speed of the object. This has an important
implication in a gravity environment: the gravity will
cause the speed to increase although the object seems
to stay still (it is repositioned at each frame).
The gravity must be compensated in one way or another.
the new servo control motion actuator is the simplest
way: set the target speed along the ray axis to 0
and the servo control will automatically compensate
the gravity.
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is
placed BEFORE the Drot motion actuator (the order of
actuator is important)
- All parameters are accessible through Python.
Orientation constraint
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction.
time : Maximum activation time of actuator.
0 : unlimited.
>0: number of frames before automatic deactivation.
Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
- This actuator changes the orientation of the object
and will conflict with Drot motion unless it is placed
BEFORE the Drot motion actuator (the order of
actuator is important).
- This actuator doesn't change the location and speed.
It is compatible with gravity.
- All parameters are accessible through Python.
Actuator sensor
===============
This sensor detects the activation and deactivation of actuators
of the same object. The sensor generates a positive pulse when
the corresponding sensor is activated and a negative pulse when
it is deactivated (the contrary if the Inv option is selected).
This is mostly useful to chain actions and to detect the loss of
contact of the distance motion actuator.
Notes: - Actuators are disabled at the start of the game; if you
want to detect the On-Off transition of an actuator
after it has been activated at least once, unselect the
Lvl and Inv options and use a NAND controller.
- Some actuators deactivates themselves immediately after
being activated. The sensor detects this situation as
an On-Off transition.
- The actuator name can be set through Python.
Keyboard sensors can now hook escape key. Ctrl-Break can be used from within blender if you've forgotten an end game actuator.
Fixed a stupid bug preventing some actuators working (like TrackTo).
Add Python Mapping method to CListValue
Fix Bernoulli bool distribution python method for random actuator
Fix Python IpoActuator methods setProperty and force acts local
Make data objects private
Better sort method for polygon materials - much easier to understand
(adding)
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
also the Makefile.in's were from previous patch adding
the system depend stuff to configure.ac
Kent
--
mein@cs.umn.edu