I did a very drastic cleanup for the different libgroups, there's now only a few left. It compiled with scons/msvc, will be testing in a bit on linux, too.
If you get any problems, please reply to this commit message on the taskforce ML.
interface for it is still missing. Right now there is only a simple hard coded
example, that moves a single control particle with strong attraction
and velocity forces through the domain.
I added more detailed information about the control code to the wiki
http://wiki.blender.org/index.php/SoCFluidDevelDoc#The_Fluid-Control_Branch ,
together with some thoughts on how a Blender integration could be done.
issues in parallel... So this commit contains: an update of
the solver (e.g. moving objects), integration of blender IPOs,
improved rendering (motion blur, smoothed normals) and a first particle
test. In more detail:
Solver update:
- Moving objects using a relatively simple model, and not yet fully optimized - ok
for box falling into water, water in a moving glass might cause trouble. Simulation
times are influenced by overall no. of triangles of the mesh, scaling meshes up a lot
might also cause slowdowns.
- Additional obstacle settings: noslip (as before), free slip (move along wall freely)
and part slip (mix of both).
- Obstacle settings also added for domain boundaries now, the six walls of the domain are
obstacles after all as well
- Got rid of templates, should make compiling for e.g. macs more convenient,
for linux there's not much difference. Finally got rid of parser (and some other code
parts), the simulation now uses the internal API to transfer data.
- Some unnecessary file were removed, the GUI now needs 3 settings buttons...
This should still be changed (maybe by adding a new panel for domain objects).
IPOs:
- Animated params: viscosity, time and gravity for domains. In contrast
to normal time IPO for Blender objects, the fluidsim one scales the time
step size - so a constant 1 has no effect, values towards 0 slow it down,
larger ones speed the simulation up (-> longer time steps, more compuations).
The viscosity IPO is also only a factor for the selected viscosity (again, 1=no effect).
- For objects that are enabled for fluidsim, a new IPO type shows up. Inflow
objects can use the velocity channels to animate the inflow. Obstacles, in/outflow
objects can be switched on (Active IPO>0) and off (<0) during the simulation.
- Movement, rotation and scaling of those 3 types is exported from the normal
Blender channels (Loc,dLoc,etc.).
Particles:
- This is still experimental, so it might be deactivated for a
release... It should at some point be used to model smaller splashes,
depending on the the realworld size and the particle generation
settings particles are generated during simulation (stored in _particles_X.gz
files).
- These are loaded by enabling the particle field for an arbitrary object,
which should be given a halo material. For each frame, similar to the mesh
loading, the particle system them loads the simulated particle positions.
- For rendering, I "abused" the part->rt field - I couldnt find any use
for it in the code and it seems to work fine. The fluidsim particles
store their size there.
Rendering:
- The fluidims particles use scaled sizes and alpha values to give a more varied
appearance. In convertblender.c fluidsim particle systems use the p->rt field
to scale up the size and down the alpha of "smaller particles". Setting the
influence fields in the fluidims settings to 0 gives equally sized particles
with same alpha everywhere. Higher values cause larger differences.
- Smoothed normals: for unmodified fluid meshes (e.g. no subdivision) the normals
computed by the solver are used. This is basically done by switching off the
normal recalculation in convertblender.c (the function calc_fluidsimnormals
handles other mesh inits instead of calc_vertexnormals).
This could also be used to e.g. modify mesh normals in a modifier...
- Another change is that fluidsim meshes load the velocities computed
during the simulation for image based motion blur. This is inited in
load_fluidsimspeedvectors for the vector pass (they're loaded during the
normal load in DerivedMesh readBobjgz). Generation and loading can be switched
off in the settings. Vector pass currently loads the fluidism meshes 3 times,
so this should still be optimized.
Examples:
- smoothed normals versus normals from subdividing once:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_1smoothnorms.pnghttp://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_2subdivnorms.png
- fluidsim particles, size/alpha influence 0:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_3particlesnorm.png
size influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_4particlessize.png
size & alpha influence 1:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/v060227_5particlesalpha.png
- the standard drop with motion blur and particles:
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t2new.mpg
(here's how it looks without
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t1old.mpg)
- another inflow animation (moving, switched on/off) with a moving obstacle
(and strong mblur :)
http://www10.informatik.uni-erlangen.de/~sinithue/temp/elbeemupdate_t3ipos.mpg
Things still to fix:
- rotating & scaling domains causes wrong speed vectors
- get rid of SDL code for threading, use pthreads as well?
- update wiki documentation
- cool effects for rendering would be photon maps for caustics,
and motion blur for particles :)
+ BF_BUILDINFO=1 (by default) for build info in splash
- remove redundant renderconverter include dir
* check for win32-vc instead of only win32, so MingW compile goes ok
* This commit is all of the rewrite work done on the SCons system. For
documentation see doc/blender-scons.txt and doc/blender-scons-dev.txt.
Also http://mediawiki.blender.org/index.php/BlenderDev/SconsRefactoring
contains valuable information, along with what still needs to be done.
- linux, os x and windows compile now.
- files are compiled to BF_INSTALLDIR (see config/(platform)-config.py)
- NOTE: Jean-Luc P will commit sometime during the weekend proper
appit() for OS X. For now, copy the resulting binary to an
existing .app bundle.
- features:
- cleaner structure for better maintenance
- cleaner output during compile
- better handling of build options
- general overall speed increase
- see the wiki for more info
Cygwin, FreeBSD and Solaris systems still need work. For these systems:
1) copy a config/(platform)-config.py to ie. config/cygwin-config.py
2) set the proper defaults for your platform
3) mail me at jesterking at letwory dot net with you configuration. if
you need any modifications to the system, do send a patch, too.
I'll be giving first-aid today and tomorrow, after that it'll be all
regular development work :)
/Nathan
in this case only the new blenderdummy.cpp and utilities.cpp have to be compiled
- restructured gui:
* domain options split up into 2 sections
* added compressibility and refinement settings
* added inflow/outflow object types
- increased progress bar by 1
- debug output now controlled globally by elbeem debug level
(BLENDER_ELBEEMDEBUG environment var), also for fluidsimBake
and read/writeBobj
- debug output is written to file for WIN32
- added "for" and "vector" etc. defines for MSVC6
(I couldnt get hold of the compiler itself, so not tested yet)
(fixed shadowed variables warnings, removed cfgparser.hpp,
added cfgparser.h, removed debugging output)
- added support for env. var BLENDER_ELBEEMDEBUG to enable
debugging output again
- fixed missing triangle display (marching cubes produced v3=0 triangles)
- fixed geometry init bug (nearest intersection check
for intersecting objects was messed up)
- changed position of derived mesh creation in DerivedMesh.c
(for some reason the useDeform code is necessary, without it or
with useDeform=0 nothing is displayed)
- 3dviews now update every 2 seconds to show simulation progress
- note: mesh_strip_loose_faces(me); in ./source/blender/blenkernel/intern/mesh.c:937
not necessary anymore?