blender/extern/recastnavigation/Recast/Source/RecastRegion.cpp
2010-05-19 01:01:21 +00:00

1082 lines
26 KiB
C++

//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include <float.h>
#define _USE_MATH_DEFINES
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include "Recast.h"
#include "RecastLog.h"
#include "RecastTimer.h"
static unsigned short* calculateDistanceField(rcCompactHeightfield& chf,
unsigned short* src, unsigned short* dst,
unsigned short& maxDist)
{
const int w = chf.width;
const int h = chf.height;
// Init distance and points.
for (int i = 0; i < chf.spanCount; ++i)
src[i] = 0xffff;
// Mark boundary cells.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int nc = 0;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != 0xf)
nc++;
}
if (nc != 4)
src[i] = 0;
}
}
}
// Pass 1
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 0) != 0xf)
{
// (-1,0)
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (-1,-1)
if (rcGetCon(as, 3) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(3);
const int aay = ay + rcGetDirOffsetY(3);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 3);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
if (rcGetCon(s, 3) != 0xf)
{
// (0,-1)
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (1,-1)
if (rcGetCon(as, 2) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(2);
const int aay = ay + rcGetDirOffsetY(2);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 2);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
}
}
}
// Pass 2
for (int y = h-1; y >= 0; --y)
{
for (int x = w-1; x >= 0; --x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (rcGetCon(s, 2) != 0xf)
{
// (1,0)
const int ax = x + rcGetDirOffsetX(2);
const int ay = y + rcGetDirOffsetY(2);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 2);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (1,1)
if (rcGetCon(as, 1) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(1);
const int aay = ay + rcGetDirOffsetY(1);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 1);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
if (rcGetCon(s, 1) != 0xf)
{
// (0,1)
const int ax = x + rcGetDirOffsetX(1);
const int ay = y + rcGetDirOffsetY(1);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 1);
const rcCompactSpan& as = chf.spans[ai];
if (src[ai]+2 < src[i])
src[i] = src[ai]+2;
// (-1,1)
if (rcGetCon(as, 0) != 0xf)
{
const int aax = ax + rcGetDirOffsetX(0);
const int aay = ay + rcGetDirOffsetY(0);
const int aai = (int)chf.cells[aax+aay*w].index + rcGetCon(as, 0);
if (src[aai]+3 < src[i])
src[i] = src[aai]+3;
}
}
}
}
}
maxDist = 0;
for (int i = 0; i < chf.spanCount; ++i)
maxDist = rcMax(src[i], maxDist);
return src;
}
static unsigned short* boxBlur(rcCompactHeightfield& chf, int thr,
unsigned short* src, unsigned short* dst)
{
const int w = chf.width;
const int h = chf.height;
thr *= 2;
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
int cd = (int)src[i];
if (cd <= thr)
{
dst[i] = cd;
continue;
}
int d = cd;
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
d += (int)src[ai];
const rcCompactSpan& as = chf.spans[ai];
const int dir2 = (dir+1) & 0x3;
if (rcGetCon(as, dir2) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dir2);
const int ay2 = ay + rcGetDirOffsetY(dir2);
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
d += (int)src[ai2];
}
else
{
d += cd;
}
}
else
{
d += cd*2;
}
}
dst[i] = (unsigned short)((d+5)/9);
}
}
}
return dst;
}
static bool floodRegion(int x, int y, int i,
unsigned short level, unsigned short minLevel, unsigned short r,
rcCompactHeightfield& chf,
unsigned short* src,
rcIntArray& stack)
{
const int w = chf.width;
// Flood fill mark region.
stack.resize(0);
stack.push((int)x);
stack.push((int)y);
stack.push((int)i);
src[i*2] = r;
src[i*2+1] = 0;
unsigned short lev = level >= minLevel+2 ? level-2 : minLevel;
int count = 0;
while (stack.size() > 0)
{
int ci = stack.pop();
int cy = stack.pop();
int cx = stack.pop();
const rcCompactSpan& cs = chf.spans[ci];
// Check if any of the neighbours already have a valid region set.
unsigned short ar = 0;
for (int dir = 0; dir < 4; ++dir)
{
// 8 connected
if (rcGetCon(cs, dir) != 0xf)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
unsigned short nr = src[ai*2];
if (nr != 0 && nr != r)
ar = nr;
const rcCompactSpan& as = chf.spans[ai];
const int dir2 = (dir+1) & 0x3;
if (rcGetCon(as, dir2) != 0xf)
{
const int ax2 = ax + rcGetDirOffsetX(dir2);
const int ay2 = ay + rcGetDirOffsetY(dir2);
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
unsigned short nr = src[ai2*2];
if (nr != 0 && nr != r)
ar = nr;
}
}
}
if (ar != 0)
{
src[ci*2] = 0;
continue;
}
count++;
// Expand neighbours.
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(cs, dir) != 0xf)
{
const int ax = cx + rcGetDirOffsetX(dir);
const int ay = cy + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(cs, dir);
if (chf.spans[ai].dist >= lev)
{
if (src[ai*2] == 0)
{
src[ai*2] = r;
src[ai*2+1] = 0;
stack.push(ax);
stack.push(ay);
stack.push(ai);
}
}
}
}
}
return count > 0;
}
static unsigned short* expandRegions(int maxIter, unsigned short level,
rcCompactHeightfield& chf,
unsigned short* src,
unsigned short* dst,
rcIntArray& stack)
{
const int w = chf.width;
const int h = chf.height;
// Find cells revealed by the raised level.
stack.resize(0);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist >= level && src[i*2] == 0)
{
stack.push(x);
stack.push(y);
stack.push(i);
}
}
}
}
int iter = 0;
while (stack.size() > 0)
{
int failed = 0;
memcpy(dst, src, sizeof(unsigned short)*chf.spanCount*2);
for (int j = 0; j < stack.size(); j += 3)
{
int x = stack[j+0];
int y = stack[j+1];
int i = stack[j+2];
if (i < 0)
{
failed++;
continue;
}
unsigned short r = src[i*2];
unsigned short d2 = 0xffff;
const rcCompactSpan& s = chf.spans[i];
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) == 0xf) continue;
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
if (src[ai*2] > 0 && (src[ai*2] & RC_BORDER_REG) == 0)
{
if ((int)src[ai*2+1]+2 < (int)d2)
{
r = src[ai*2];
d2 = src[ai*2+1]+2;
}
}
}
if (r)
{
stack[j+2] = -1; // mark as used
dst[i*2] = r;
dst[i*2+1] = d2;
}
else
{
failed++;
}
}
// rcSwap source and dest.
rcSwap(src, dst);
if (failed*3 == stack.size())
break;
if (level > 0)
{
++iter;
if (iter >= maxIter)
break;
}
}
return src;
}
struct rcRegion
{
inline rcRegion() : count(0), id(0), remap(false) {}
int count;
unsigned short id;
bool remap;
rcIntArray connections;
rcIntArray floors;
};
static void removeAdjacentNeighbours(rcRegion& reg)
{
// Remove adjacent duplicates.
for (int i = 0; i < reg.connections.size() && reg.connections.size() > 1; )
{
int ni = (i+1) % reg.connections.size();
if (reg.connections[i] == reg.connections[ni])
{
// Remove duplicate
for (int j = i; j < reg.connections.size()-1; ++j)
reg.connections[j] = reg.connections[j+1];
reg.connections.pop();
}
else
++i;
}
}
static void replaceNeighbour(rcRegion& reg, unsigned short oldId, unsigned short newId)
{
bool neiChanged = false;
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == oldId)
{
reg.connections[i] = newId;
neiChanged = true;
}
}
for (int i = 0; i < reg.floors.size(); ++i)
{
if (reg.floors[i] == oldId)
reg.floors[i] = newId;
}
if (neiChanged)
removeAdjacentNeighbours(reg);
}
static bool canMergeWithRegion(rcRegion& reg, unsigned short id)
{
int n = 0;
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == id)
n++;
}
if (n > 1)
return false;
for (int i = 0; i < reg.floors.size(); ++i)
{
if (reg.floors[i] == id)
return false;
}
return true;
}
static void addUniqueFloorRegion(rcRegion& reg, unsigned short n)
{
for (int i = 0; i < reg.floors.size(); ++i)
if (reg.floors[i] == n)
return;
reg.floors.push(n);
}
static bool mergeRegions(rcRegion& rega, rcRegion& regb)
{
unsigned short aid = rega.id;
unsigned short bid = regb.id;
// Duplicate current neighbourhood.
rcIntArray acon;
acon.resize(rega.connections.size());
for (int i = 0; i < rega.connections.size(); ++i)
acon[i] = rega.connections[i];
rcIntArray& bcon = regb.connections;
// Find insertion point on A.
int insa = -1;
for (int i = 0; i < acon.size(); ++i)
{
if (acon[i] == bid)
{
insa = i;
break;
}
}
if (insa == -1)
return false;
// Find insertion point on B.
int insb = -1;
for (int i = 0; i < bcon.size(); ++i)
{
if (bcon[i] == aid)
{
insb = i;
break;
}
}
if (insb == -1)
return false;
// Merge neighbours.
rega.connections.resize(0);
for (int i = 0, ni = acon.size(); i < ni-1; ++i)
rega.connections.push(acon[(insa+1+i) % ni]);
for (int i = 0, ni = bcon.size(); i < ni-1; ++i)
rega.connections.push(bcon[(insb+1+i) % ni]);
removeAdjacentNeighbours(rega);
for (int j = 0; j < regb.floors.size(); ++j)
addUniqueFloorRegion(rega, regb.floors[j]);
rega.count += regb.count;
regb.count = 0;
regb.connections.resize(0);
return true;
}
static bool isRegionConnectedToBorder(const rcRegion& reg)
{
// Region is connected to border if
// one of the neighbours is null id.
for (int i = 0; i < reg.connections.size(); ++i)
{
if (reg.connections[i] == 0)
return true;
}
return false;
}
static bool isSolidEdge(rcCompactHeightfield& chf, unsigned short* src,
int x, int y, int i, int dir)
{
const rcCompactSpan& s = chf.spans[i];
unsigned short r = 0;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = src[ai*2];
}
if (r == src[i*2])
return false;
return true;
}
static void walkContour(int x, int y, int i, int dir,
rcCompactHeightfield& chf,
unsigned short* src,
rcIntArray& cont)
{
int startDir = dir;
int starti = i;
const rcCompactSpan& ss = chf.spans[i];
unsigned short curReg = 0;
if (rcGetCon(ss, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(ss, dir);
curReg = src[ai*2];
}
cont.push(curReg);
int iter = 0;
while (++iter < 40000)
{
const rcCompactSpan& s = chf.spans[i];
if (isSolidEdge(chf, src, x, y, i, dir))
{
// Choose the edge corner
unsigned short r = 0;
if (rcGetCon(s, dir) != 0xf)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*chf.width].index + rcGetCon(s, dir);
r = src[ai*2];
}
if (r != curReg)
{
curReg = r;
cont.push(curReg);
}
dir = (dir+1) & 0x3; // Rotate CW
}
else
{
int ni = -1;
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
if (rcGetCon(s, dir) != 0xf)
{
const rcCompactCell& nc = chf.cells[nx+ny*chf.width];
ni = (int)nc.index + rcGetCon(s, dir);
}
if (ni == -1)
{
// Should not happen.
return;
}
x = nx;
y = ny;
i = ni;
dir = (dir+3) & 0x3; // Rotate CCW
}
if (starti == i && startDir == dir)
{
break;
}
}
// Remove adjacent duplicates.
if (cont.size() > 1)
{
for (int i = 0; i < cont.size(); )
{
int ni = (i+1) % cont.size();
if (cont[i] == cont[ni])
{
for (int j = i; j < cont.size()-1; ++j)
cont[j] = cont[j+1];
cont.pop();
}
else
++i;
}
}
}
static bool filterSmallRegions(int minRegionSize, int mergeRegionSize,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* src)
{
const int w = chf.width;
const int h = chf.height;
int nreg = maxRegionId+1;
rcRegion* regions = new rcRegion[nreg];
if (!regions)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
for (int i = 0; i < nreg; ++i)
regions[i].id = (unsigned short)i;
// Find edge of a region and find connections around the contour.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
unsigned short r = src[i*2];
if (r == 0 || r >= nreg)
continue;
rcRegion& reg = regions[r];
reg.count++;
// Update floors.
for (int j = (int)c.index; j < ni; ++j)
{
if (i == j) continue;
unsigned short floorId = src[j*2];
if (floorId == 0 || floorId >= nreg)
continue;
addUniqueFloorRegion(reg, floorId);
}
// Have found contour
if (reg.connections.size() > 0)
continue;
// Check if this cell is next to a border.
int ndir = -1;
for (int dir = 0; dir < 4; ++dir)
{
if (isSolidEdge(chf, src, x, y, i, dir))
{
ndir = dir;
break;
}
}
if (ndir != -1)
{
// The cell is at border.
// Walk around the contour to find all the neighbours.
walkContour(x, y, i, ndir, chf, src, reg.connections);
}
}
}
}
// Remove too small unconnected regions.
for (int i = 0; i < nreg; ++i)
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
continue;
if (reg.count == 0)
continue;
if (reg.connections.size() == 1 && reg.connections[0] == 0)
{
if (reg.count < minRegionSize)
{
// Non-connected small region, remove.
reg.count = 0;
reg.id = 0;
}
}
}
// Merge too small regions to neighbour regions.
int mergeCount = 0 ;
do
{
mergeCount = 0;
for (int i = 0; i < nreg; ++i)
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
continue;
if (reg.count == 0)
continue;
// Check to see if the region should be merged.
if (reg.count > mergeRegionSize && isRegionConnectedToBorder(reg))
continue;
// Small region with more than 1 connection.
// Or region which is not connected to a border at all.
// Find smallest neighbour region that connects to this one.
int smallest = 0xfffffff;
unsigned short mergeId = reg.id;
for (int j = 0; j < reg.connections.size(); ++j)
{
if (reg.connections[j] & RC_BORDER_REG) continue;
rcRegion& mreg = regions[reg.connections[j]];
if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue;
if (mreg.count < smallest &&
canMergeWithRegion(reg, mreg.id) &&
canMergeWithRegion(mreg, reg.id))
{
smallest = mreg.count;
mergeId = mreg.id;
}
}
// Found new id.
if (mergeId != reg.id)
{
unsigned short oldId = reg.id;
rcRegion& target = regions[mergeId];
// Merge neighbours.
if (mergeRegions(target, reg))
{
// Fixup regions pointing to current region.
for (int j = 0; j < nreg; ++j)
{
if (regions[j].id == 0 || (regions[j].id & RC_BORDER_REG)) continue;
// If another region was already merged into current region
// change the nid of the previous region too.
if (regions[j].id == oldId)
regions[j].id = mergeId;
// Replace the current region with the new one if the
// current regions is neighbour.
replaceNeighbour(regions[j], oldId, mergeId);
}
mergeCount++;
}
}
}
}
while (mergeCount > 0);
// Compress region Ids.
for (int i = 0; i < nreg; ++i)
{
regions[i].remap = false;
if (regions[i].id == 0) continue; // Skip nil regions.
if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
regions[i].remap = true;
}
unsigned short regIdGen = 0;
for (int i = 0; i < nreg; ++i)
{
if (!regions[i].remap)
continue;
unsigned short oldId = regions[i].id;
unsigned short newId = ++regIdGen;
for (int j = i; j < nreg; ++j)
{
if (regions[j].id == oldId)
{
regions[j].id = newId;
regions[j].remap = false;
}
}
}
maxRegionId = regIdGen;
// Remap regions.
for (int i = 0; i < chf.spanCount; ++i)
{
if ((src[i*2] & RC_BORDER_REG) == 0)
src[i*2] = regions[src[i*2]].id;
}
delete [] regions;
return true;
}
bool rcBuildDistanceField(rcCompactHeightfield& chf)
{
rcTimeVal startTime = rcGetPerformanceTimer();
unsigned short* dist0 = new unsigned short[chf.spanCount];
if (!dist0)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist0' (%d).", chf.spanCount);
return false;
}
unsigned short* dist1 = new unsigned short[chf.spanCount];
if (!dist1)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'dist1' (%d).", chf.spanCount);
delete [] dist0;
return false;
}
unsigned short* src = dist0;
unsigned short* dst = dist1;
unsigned short maxDist = 0;
rcTimeVal distStartTime = rcGetPerformanceTimer();
if (calculateDistanceField(chf, src, dst, maxDist) != src)
rcSwap(src, dst);
chf.maxDistance = maxDist;
rcTimeVal distEndTime = rcGetPerformanceTimer();
rcTimeVal blurStartTime = rcGetPerformanceTimer();
// Blur
if (boxBlur(chf, 1, src, dst) != src)
rcSwap(src, dst);
// Store distance.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].dist = src[i];
rcTimeVal blurEndTime = rcGetPerformanceTimer();
delete [] dist0;
delete [] dist1;
rcTimeVal endTime = rcGetPerformanceTimer();
/* if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Build distance field: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - dist: %.3f ms", rcGetDeltaTimeUsec(distStartTime, distEndTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - blur: %.3f ms", rcGetDeltaTimeUsec(blurStartTime, blurEndTime)/1000.0f);
}*/
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildDistanceField += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildDistanceFieldDist += rcGetDeltaTimeUsec(distStartTime, distEndTime);
rcGetBuildTimes()->buildDistanceFieldBlur += rcGetDeltaTimeUsec(blurStartTime, blurEndTime);
}
return true;
}
static void paintRectRegion(int minx, int maxx, int miny, int maxy,
unsigned short regId, unsigned short minLevel,
rcCompactHeightfield& chf, unsigned short* src)
{
const int w = chf.width;
for (int y = miny; y < maxy; ++y)
{
for (int x = minx; x < maxx; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist >= minLevel)
src[i*2] = regId;
}
}
}
}
bool rcBuildRegions(rcCompactHeightfield& chf,
int walkableRadius, int borderSize,
int minRegionSize, int mergeRegionSize)
{
rcTimeVal startTime = rcGetPerformanceTimer();
const int w = chf.width;
const int h = chf.height;
unsigned short* tmp1 = new unsigned short[chf.spanCount*2];
if (!tmp1)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp1' (%d).", chf.spanCount*2);
return false;
}
unsigned short* tmp2 = new unsigned short[chf.spanCount*2];
if (!tmp2)
{
if (rcGetLog())
rcGetLog()->log(RC_LOG_ERROR, "rcBuildDistanceField: Out of memory 'tmp2' (%d).", chf.spanCount*2);
delete [] tmp1;
return false;
}
rcTimeVal regStartTime = rcGetPerformanceTimer();
rcIntArray stack(1024);
rcIntArray visited(1024);
unsigned short* src = tmp1;
unsigned short* dst = tmp2;
memset(src, 0, sizeof(unsigned short) * chf.spanCount*2);
unsigned short regionId = 1;
unsigned short level = (chf.maxDistance+1) & ~1;
unsigned short minLevel = (unsigned short)(walkableRadius*2);
const int expandIters = 4 + walkableRadius * 2;
// Mark border regions.
paintRectRegion(0, borderSize, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(w-borderSize, w, 0, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(0, w, 0, borderSize, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
paintRectRegion(0, w, h-borderSize, h, regionId|RC_BORDER_REG, minLevel, chf, src); regionId++;
rcTimeVal expTime = 0;
rcTimeVal floodTime = 0;
while (level > minLevel)
{
level = level >= 2 ? level-2 : 0;
rcTimeVal expStartTime = rcGetPerformanceTimer();
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters, level, chf, src, dst, stack) != src)
rcSwap(src, dst);
expTime += rcGetPerformanceTimer() - expStartTime;
rcTimeVal floodStartTime = rcGetPerformanceTimer();
// Mark new regions with IDs.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.spans[i].dist < level || src[i*2] != 0)
continue;
if (floodRegion(x, y, i, minLevel, level, regionId, chf, src, stack))
regionId++;
}
}
}
floodTime += rcGetPerformanceTimer() - floodStartTime;
}
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters*8, minLevel, chf, src, dst, stack) != src)
rcSwap(src, dst);
rcTimeVal regEndTime = rcGetPerformanceTimer();
rcTimeVal filterStartTime = rcGetPerformanceTimer();
// Filter out small regions.
chf.maxRegions = regionId;
if (!filterSmallRegions(minRegionSize, mergeRegionSize, chf.maxRegions, chf, src))
return false;
rcTimeVal filterEndTime = rcGetPerformanceTimer();
// Write the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = src[i*2];
delete [] tmp1;
delete [] tmp2;
rcTimeVal endTime = rcGetPerformanceTimer();
/* if (rcGetLog())
{
rcGetLog()->log(RC_LOG_PROGRESS, "Build regions: %.3f ms", rcGetDeltaTimeUsec(startTime, endTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - reg: %.3f ms", rcGetDeltaTimeUsec(regStartTime, regEndTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - exp: %.3f ms", rcGetDeltaTimeUsec(0, expTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - flood: %.3f ms", rcGetDeltaTimeUsec(0, floodTime)/1000.0f);
rcGetLog()->log(RC_LOG_PROGRESS, " - filter: %.3f ms", rcGetDeltaTimeUsec(filterStartTime, filterEndTime)/1000.0f);
}
*/
if (rcGetBuildTimes())
{
rcGetBuildTimes()->buildRegions += rcGetDeltaTimeUsec(startTime, endTime);
rcGetBuildTimes()->buildRegionsReg += rcGetDeltaTimeUsec(regStartTime, regEndTime);
rcGetBuildTimes()->buildRegionsExp += rcGetDeltaTimeUsec(0, expTime);
rcGetBuildTimes()->buildRegionsFlood += rcGetDeltaTimeUsec(0, floodTime);
rcGetBuildTimes()->buildRegionsFilter += rcGetDeltaTimeUsec(filterStartTime, filterEndTime);
}
return true;
}