blender/source/gameengine/Ketsji/KX_ConstraintActuator.cpp
Benoit Bolsee 70d239ef7d BGE logic update: new servo control motion actuator, new distance constraint actuator, new orientation constraint actuator, new actuator sensor.
General
=======
- Removal of Damp option in motion actuator (replaced by
  Servo control motion).
- No PyDoc at present, will be added soon.

Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an 
event at the start of the game or when entering a state or at 
object creation. The event will be positive or negative 
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.

Servo control motion
====================
A new variant of the motion actuator allows to control speed 
with force. The control if of type "PID" (Propotional, Integral, 
Derivate): the force is automatically adapted to achieve the 
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style: 
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision 
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world 
       coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
       coordinates of LinV). No limitation means that the force
       will grow as large as necessary to achieve the target 
       speed along that axis. Set a max value to limit the 
       accelaration along an axis (slow start) and set a min
       value (negative) to limit the brake force.
P:     Proportional coefficient of servo controller, don't set
       directly unless you know what you're doing.
I:     Integral coefficient of servo controller. Use low value
       (<0.1) for slow reaction (sliding), high values (>0.5)
       for hard control. The P coefficient will be automatically
       set to 60 times the I coefficient (a reasonable value).
D:     Derivate coefficient. Leave to 0 unless you know what
       you're doing. High values create instability. 

Notes: - This actuator works perfectly in zero friction 
         environment: the PID controller will simulate friction
         by applying force as needed.
       - This actuator is compatible with simple Drot motion
         actuator but not with LinV and Dloc motion.
       - (0,0,0) is a valid target speed.
       - All parameters are accessible through Python.

Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp:  Time constant (in nb of frames) of distance and 
       orientation control.
Dist:  Select to enable distance control and set target 
       distance. The object will be position at the given
       distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be 
       detected.
N    : Select to enable orientation control. The actuator will
       change the orientation and the location of the object 
       so that it is parallel to the surface at the vertical
       of the point of contact of the ray.  
M/P  : Select to enable material detection. Default is property
       detection.
Property/Material: name of property/material that the target of
       ray must have to be detected. If not set, property/
       material filter is disabled and any collisioning object
       within range will be detected.
PER  : Select to enable persistent operation. Normally the 
       actuator disables itself automatically if the ray does
       not reach a valid target. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  
rotDamp: Time constant (in nb of frame) of orientation control.
       0 : use Damp parameter.
       >0: use a different time constant for orientation.

Notes: - If neither N nor Dist options are set, the actuator
         does not change the position and orientation of the
         object; it works as a ray sensor.
       - The ray has no "X-ray" capability: if the first object
         hit does not have the required property/material, it
         returns no hit and the actuator disables itself unless
         PER option is enabled.
       - This actuator changes the position and orientation but
         not the speed of the object. This has an important 
         implication in a gravity environment: the gravity will
         cause the speed to increase although the object seems
         to stay still (it is repositioned at each frame).
         The gravity must be compensated in one way or another.
         the new servo control motion actuator is the simplest 
         way: set the target speed along the ray axis to 0
         and the servo control will automatically compensate 
         the gravity.
       - This actuator changes the orientation of the object 
         and will conflict with Drot motion unless it is 
         placed BEFORE the Drot motion actuator (the order of 
         actuator is important)
       - All parameters are accessible through Python.

Orientation constraint 
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  

Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
       - This actuator changes the orientation of the object
         and will conflict with Drot motion unless it is placed
         BEFORE the Drot motion actuator (the order of 
         actuator is important).
       - This actuator doesn't change the location and speed. 
         It is compatible with gravity.
       - All parameters are accessible through Python.

Actuator sensor 
===============
This sensor detects the activation and deactivation of actuators 
of the same object. The sensor generates a positive pulse when 
the corresponding sensor is activated and a negative pulse when 
it is deactivated (the contrary if the Inv option is selected). 
This is mostly useful to chain actions and to detect the loss of 
contact of the distance motion actuator.

Notes: - Actuators are disabled at the start of the game; if you
         want to detect the On-Off transition of an actuator 
         after it has been activated at least once, unselect the
         Lvl and Inv options and use a NAND controller.
       - Some actuators deactivates themselves immediately after 
         being activated. The sensor detects this situation as 
         an On-Off transition.
       - The actuator name can be set through Python.
2008-07-04 08:14:50 +00:00

757 lines
24 KiB
C++

/**
* Apply a constraint to a position or rotation value
*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "SCA_IActuator.h"
#include "KX_ConstraintActuator.h"
#include "SCA_IObject.h"
#include "MT_Point3.h"
#include "MT_Matrix3x3.h"
#include "KX_GameObject.h"
#include "KX_RayCast.h"
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
/* ------------------------------------------------------------------------- */
/* Native functions */
/* ------------------------------------------------------------------------- */
KX_ConstraintActuator::KX_ConstraintActuator(SCA_IObject *gameobj,
int posDampTime,
int rotDampTime,
float minBound,
float maxBound,
float refDir[3],
int locrotxyz,
int time,
int option,
char *property,
PyTypeObject* T) :
m_refDirection(refDir),
m_currentTime(0),
SCA_IActuator(gameobj, T)
{
m_posDampTime = posDampTime;
m_rotDampTime = rotDampTime;
m_locrot = locrotxyz;
m_option = option;
m_activeTime = time;
if (property) {
strncpy(m_property, property, sizeof(m_property));
m_property[sizeof(m_property)-1] = 0;
} else {
m_property[0] = 0;
}
/* The units of bounds are determined by the type of constraint. To */
/* make the constraint application easier and more transparent later on, */
/* I think converting the bounds to the applicable domain makes more */
/* sense. */
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
{
MT_Scalar len = m_refDirection.length();
if (MT_fuzzyZero(len)) {
// missing a valid direction
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no valid reference direction!" << std::endl;
m_locrot = KX_ACT_CONSTRAINT_NODEF;
} else {
m_refDirection /= len;
}
}
break;
default:
m_minimumBound = minBound;
m_maximumBound = maxBound;
break;
}
} /* End of constructor */
KX_ConstraintActuator::~KX_ConstraintActuator()
{
// there's nothing to be done here, really....
} /* end of destructor */
bool KX_ConstraintActuator::RayHit(KX_ClientObjectInfo* client, MT_Point3& hit_point, MT_Vector3& hit_normal, void * const data)
{
KX_GameObject* hitKXObj = client->m_gameobject;
if (client->m_type > KX_ClientObjectInfo::ACTOR)
{
// false hit
return false;
}
bool bFound = false;
if (m_property[0] == 0)
{
bFound = true;
}
else
{
if (m_option & KX_ACT_CONSTRAINT_MATERIAL)
{
if (client->m_auxilary_info)
{
bFound = !strcmp(m_property, ((char*)client->m_auxilary_info));
}
}
else
{
bFound = hitKXObj->GetProperty(m_property) != NULL;
}
}
return bFound;
}
bool KX_ConstraintActuator::Update(double curtime, bool frame)
{
bool result = false;
bool bNegativeEvent = IsNegativeEvent();
RemoveAllEvents();
if (!bNegativeEvent) {
/* Constraint clamps the values to the specified range, with a sort of */
/* low-pass filtered time response, if the damp time is unequal to 0. */
/* Having to retrieve location/rotation and setting it afterwards may not */
/* be efficient enough... Somthing to look at later. */
KX_GameObject *obj = (KX_GameObject*) GetParent();
MT_Point3 position = obj->NodeGetWorldPosition();
MT_Point3 newposition;
MT_Vector3 direction;
MT_Matrix3x3 rotation = obj->NodeGetWorldOrientation();
MT_Scalar filter, newdistance;
int axis, sign;
if (m_posDampTime) {
filter = m_posDampTime/(1.0+m_posDampTime);
}
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
case KX_ACT_CONSTRAINT_ORIY:
case KX_ACT_CONSTRAINT_ORIZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_ORIX:
direction[0] = rotation[0][0];
direction[1] = rotation[1][0];
direction[2] = rotation[2][0];
axis = 0;
break;
case KX_ACT_CONSTRAINT_ORIY:
direction[0] = rotation[0][1];
direction[1] = rotation[1][1];
direction[2] = rotation[2][1];
axis = 1;
break;
case KX_ACT_CONSTRAINT_ORIZ:
direction[0] = rotation[0][2];
direction[1] = rotation[1][2];
direction[2] = rotation[2][2];
axis = 2;
break;
}
// apply damping on the direction
if (m_posDampTime) {
direction = filter*direction + (1.0-filter)*m_refDirection;
}
obj->AlignAxisToVect(direction, axis);
result = true;
goto CHECK_TIME;
case KX_ACT_CONSTRAINT_DIRPX:
case KX_ACT_CONSTRAINT_DIRPY:
case KX_ACT_CONSTRAINT_DIRPZ:
case KX_ACT_CONSTRAINT_DIRMX:
case KX_ACT_CONSTRAINT_DIRMY:
case KX_ACT_CONSTRAINT_DIRMZ:
switch (m_locrot) {
case KX_ACT_CONSTRAINT_DIRPX:
direction[0] = rotation[0][0];
direction[1] = rotation[1][0];
direction[2] = rotation[2][0];
axis = 0; // axis according to KX_GameObject::AlignAxisToVect()
sign = 1; // X axis will be anti parrallel to normal
break;
case KX_ACT_CONSTRAINT_DIRPY:
direction[0] = rotation[0][1];
direction[1] = rotation[1][1];
direction[2] = rotation[2][1];
axis = 1;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRPZ:
direction[0] = rotation[0][2];
direction[1] = rotation[1][2];
direction[2] = rotation[2][2];
axis = 2;
sign = 1;
break;
case KX_ACT_CONSTRAINT_DIRMX:
direction[0] = -rotation[0][0];
direction[1] = -rotation[1][0];
direction[2] = -rotation[2][0];
axis = 0;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRMY:
direction[0] = -rotation[0][1];
direction[1] = -rotation[1][1];
direction[2] = -rotation[2][1];
axis = 1;
sign = 0;
break;
case KX_ACT_CONSTRAINT_DIRMZ:
direction[0] = -rotation[0][2];
direction[1] = -rotation[1][2];
direction[2] = -rotation[2][2];
axis = 2;
sign = 0;
break;
}
direction.normalize();
{
MT_Point3 topoint = position + (m_maximumBound) * direction;
MT_Point3 resultpoint;
MT_Vector3 resultnormal;
PHY_IPhysicsEnvironment* pe = obj->GetPhysicsEnvironment();
KX_IPhysicsController *spc = obj->GetPhysicsController();
if (!pe) {
std::cout << "WARNING: Constraint actuator " << GetName() << ": There is no physics environment!" << std::endl;
goto CHECK_TIME;
}
if (!spc) {
// the object is not physical, we probably want to avoid hitting its own parent
KX_GameObject *parent = obj->GetParent();
if (parent) {
spc = parent->GetPhysicsController();
parent->Release();
}
}
result = KX_RayCast::RayTest(spc, pe, position, topoint, resultpoint, resultnormal, KX_RayCast::Callback<KX_ConstraintActuator>(this));
if (result) {
// compute new position & orientation
if ((m_option & (KX_ACT_CONSTRAINT_NORMAL|KX_ACT_CONSTRAINT_DISTANCE)) == 0) {
// if none option is set, the actuator does nothing but detect ray
// (works like a sensor)
goto CHECK_TIME;
}
if (m_option & KX_ACT_CONSTRAINT_NORMAL) {
// the new orientation must be so that the axis is parallel to normal
if (sign)
resultnormal = -resultnormal;
// apply damping on the direction
if (m_rotDampTime) {
MT_Scalar rotFilter = 1.0/(1.0+m_rotDampTime);
resultnormal = (-m_rotDampTime*rotFilter)*direction + rotFilter*resultnormal;
} else if (m_posDampTime) {
resultnormal = -filter*direction + (1.0-filter)*resultnormal;
}
obj->AlignAxisToVect(resultnormal, axis);
direction = -resultnormal;
}
if (m_option & KX_ACT_CONSTRAINT_DISTANCE) {
if (m_posDampTime) {
newdistance = filter*(position-resultpoint).length()+(1.0-filter)*m_minimumBound;
} else {
newdistance = m_minimumBound;
}
} else {
newdistance = (position-resultpoint).length();
}
newposition = resultpoint-newdistance*direction;
} else if (m_option & KX_ACT_CONSTRAINT_PERMANENT) {
// no contact but still keep running
result = true;
goto CHECK_TIME;
}
}
break;
case KX_ACT_CONSTRAINT_LOCX:
case KX_ACT_CONSTRAINT_LOCY:
case KX_ACT_CONSTRAINT_LOCZ:
newposition = position;
switch (m_locrot) {
case KX_ACT_CONSTRAINT_LOCX:
Clamp(newposition[0], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCY:
Clamp(newposition[1], m_minimumBound, m_maximumBound);
break;
case KX_ACT_CONSTRAINT_LOCZ:
Clamp(newposition[2], m_minimumBound, m_maximumBound);
break;
}
result = true;
if (m_posDampTime) {
newposition = filter*position + (1.0-filter)*newposition;
}
break;
}
if (result) {
// set the new position but take into account parent if any
obj->NodeSetWorldPosition(newposition);
}
CHECK_TIME:
if (result && m_activeTime > 0 ) {
if (++m_currentTime >= m_activeTime)
result = false;
}
}
if (!result) {
m_currentTime = 0;
}
return result;
} /* end of KX_ConstraintActuator::Update(double curtime,double deltatime) */
void KX_ConstraintActuator::Clamp(MT_Scalar &var,
float min,
float max) {
if (var < min) {
var = min;
} else if (var > max) {
var = max;
}
}
bool KX_ConstraintActuator::IsValidMode(KX_ConstraintActuator::KX_CONSTRAINTTYPE m)
{
bool res = false;
if ( (m > KX_ACT_CONSTRAINT_NODEF) && (m < KX_ACT_CONSTRAINT_MAX)) {
res = true;
}
return res;
}
/* ------------------------------------------------------------------------- */
/* Python functions */
/* ------------------------------------------------------------------------- */
/* Integration hooks ------------------------------------------------------- */
PyTypeObject KX_ConstraintActuator::Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"KX_ConstraintActuator",
sizeof(KX_ConstraintActuator),
0,
PyDestructor,
0,
__getattr,
__setattr,
0, //&MyPyCompare,
__repr,
0, //&cvalue_as_number,
0,
0,
0,
0
};
PyParentObject KX_ConstraintActuator::Parents[] = {
&KX_ConstraintActuator::Type,
&SCA_IActuator::Type,
&SCA_ILogicBrick::Type,
&CValue::Type,
NULL
};
PyMethodDef KX_ConstraintActuator::Methods[] = {
{"setDamp", (PyCFunction) KX_ConstraintActuator::sPySetDamp, METH_VARARGS, SetDamp_doc},
{"getDamp", (PyCFunction) KX_ConstraintActuator::sPyGetDamp, METH_VARARGS, GetDamp_doc},
{"setRotDamp", (PyCFunction) KX_ConstraintActuator::sPySetRotDamp, METH_VARARGS, SetRotDamp_doc},
{"getRotDamp", (PyCFunction) KX_ConstraintActuator::sPyGetRotDamp, METH_VARARGS, GetRotDamp_doc},
{"setDirection", (PyCFunction) KX_ConstraintActuator::sPySetDirection, METH_VARARGS, SetDirection_doc},
{"getDirection", (PyCFunction) KX_ConstraintActuator::sPyGetDirection, METH_VARARGS, GetDirection_doc},
{"setOption", (PyCFunction) KX_ConstraintActuator::sPySetOption, METH_VARARGS, SetOption_doc},
{"getOption", (PyCFunction) KX_ConstraintActuator::sPyGetOption, METH_VARARGS, GetOption_doc},
{"setTime", (PyCFunction) KX_ConstraintActuator::sPySetTime, METH_VARARGS, SetTime_doc},
{"getTime", (PyCFunction) KX_ConstraintActuator::sPyGetTime, METH_VARARGS, GetTime_doc},
{"setProperty", (PyCFunction) KX_ConstraintActuator::sPySetProperty, METH_VARARGS, SetProperty_doc},
{"getProperty", (PyCFunction) KX_ConstraintActuator::sPyGetProperty, METH_VARARGS, GetProperty_doc},
{"setMin", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetMin_doc},
{"getMin", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_VARARGS, GetMin_doc},
{"setDistance", (PyCFunction) KX_ConstraintActuator::sPySetMin, METH_VARARGS, SetDistance_doc},
{"getDistance", (PyCFunction) KX_ConstraintActuator::sPyGetMin, METH_VARARGS, GetDistance_doc},
{"setMax", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetMax_doc},
{"getMax", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_VARARGS, GetMax_doc},
{"setRayLength", (PyCFunction) KX_ConstraintActuator::sPySetMax, METH_VARARGS, SetRayLength_doc},
{"getRayLength", (PyCFunction) KX_ConstraintActuator::sPyGetMax, METH_VARARGS, GetRayLength_doc},
{"setLimit", (PyCFunction) KX_ConstraintActuator::sPySetLimit, METH_VARARGS, SetLimit_doc},
{"getLimit", (PyCFunction) KX_ConstraintActuator::sPyGetLimit, METH_VARARGS, GetLimit_doc},
{NULL,NULL} //Sentinel
};
PyObject* KX_ConstraintActuator::_getattr(const STR_String& attr) {
_getattr_up(SCA_IActuator);
}
/* 2. setDamp */
char KX_ConstraintActuator::SetDamp_doc[] =
"setDamp(duration)\n"
"\t- duration: integer\n"
"\tSets the time constant of the orientation and distance constraint.\n"
"\tIf the duration is negative, it is set to 0.\n";
PyObject* KX_ConstraintActuator::PySetDamp(PyObject* self,
PyObject* args,
PyObject* kwds) {
int dampArg;
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
return NULL;
}
m_posDampTime = dampArg;
if (m_posDampTime < 0) m_posDampTime = 0;
Py_Return;
}
/* 3. getDamp */
char KX_ConstraintActuator::GetDamp_doc[] =
"getDamp()\n"
"\tReturns the damping parameter.\n";
PyObject* KX_ConstraintActuator::PyGetDamp(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyInt_FromLong(m_posDampTime);
}
/* 2. setRotDamp */
char KX_ConstraintActuator::SetRotDamp_doc[] =
"setRotDamp(duration)\n"
"\t- duration: integer\n"
"\tSets the time constant of the orientation constraint.\n"
"\tIf the duration is negative, it is set to 0.\n";
PyObject* KX_ConstraintActuator::PySetRotDamp(PyObject* self,
PyObject* args,
PyObject* kwds) {
int dampArg;
if(!PyArg_ParseTuple(args, "i", &dampArg)) {
return NULL;
}
m_rotDampTime = dampArg;
if (m_rotDampTime < 0) m_rotDampTime = 0;
Py_Return;
}
/* 3. getRotDamp */
char KX_ConstraintActuator::GetRotDamp_doc[] =
"getRotDamp()\n"
"\tReturns the damping time for application of the constraint.\n";
PyObject* KX_ConstraintActuator::PyGetRotDamp(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyInt_FromLong(m_rotDampTime);
}
/* 2. setDirection */
char KX_ConstraintActuator::SetDirection_doc[] =
"setDirection(vector)\n"
"\t- vector: 3-tuple\n"
"\tSets the reference direction in world coordinate for the orientation constraint.\n";
PyObject* KX_ConstraintActuator::PySetDirection(PyObject* self,
PyObject* args,
PyObject* kwds) {
float x, y, z;
MT_Scalar len;
MT_Vector3 dir;
if(!PyArg_ParseTuple(args, "(fff)", &x, &y, &z)) {
return NULL;
}
dir[0] = x;
dir[1] = y;
dir[2] = z;
len = dir.length();
if (MT_fuzzyZero(len)) {
std::cout << "Invalid direction" << std::endl;
return NULL;
}
m_refDirection = dir/len;
Py_Return;
}
/* 3. getDirection */
char KX_ConstraintActuator::GetDirection_doc[] =
"getDirection()\n"
"\tReturns the reference direction of the orientation constraint as a 3-tuple.\n";
PyObject* KX_ConstraintActuator::PyGetDirection(PyObject* self,
PyObject* args,
PyObject* kwds){
PyObject *retVal = PyList_New(3);
PyList_SetItem(retVal, 0, PyFloat_FromDouble(m_refDirection[0]));
PyList_SetItem(retVal, 1, PyFloat_FromDouble(m_refDirection[1]));
PyList_SetItem(retVal, 2, PyFloat_FromDouble(m_refDirection[2]));
return retVal;
}
/* 2. setOption */
char KX_ConstraintActuator::SetOption_doc[] =
"setOption(option)\n"
"\t- option: integer\n"
"\tSets several options of the distance constraint.\n"
"\tBinary combination of the following values:\n"
"\t\t 64 : Activate alignment to surface\n"
"\t\t128 : Detect material rather than property\n"
"\t\t256 : No deactivation if ray does not hit target\n"
"\t\t512 : Activate distance control\n";
PyObject* KX_ConstraintActuator::PySetOption(PyObject* self,
PyObject* args,
PyObject* kwds) {
int option;
if(!PyArg_ParseTuple(args, "i", &option)) {
return NULL;
}
m_option = option;
Py_Return;
}
/* 3. getOption */
char KX_ConstraintActuator::GetOption_doc[] =
"getOption()\n"
"\tReturns the option parameter.\n";
PyObject* KX_ConstraintActuator::PyGetOption(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyInt_FromLong(m_option);
}
/* 2. setTime */
char KX_ConstraintActuator::SetTime_doc[] =
"setTime(duration)\n"
"\t- duration: integer\n"
"\tSets the activation time of the actuator.\n"
"\tThe actuator disables itself after this many frame.\n"
"\tIf set to 0 or negative, the actuator is not limited in time.\n";
PyObject* KX_ConstraintActuator::PySetTime(PyObject* self,
PyObject* args,
PyObject* kwds) {
int t;
if(!PyArg_ParseTuple(args, "i", &t)) {
return NULL;
}
if (t < 0)
t = 0;
m_activeTime = t;
Py_Return;
}
/* 3. getTime */
char KX_ConstraintActuator::GetTime_doc[] =
"getTime()\n"
"\tReturns the time parameter.\n";
PyObject* KX_ConstraintActuator::PyGetTime(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyInt_FromLong(m_activeTime);
}
/* 2. setProperty */
char KX_ConstraintActuator::SetProperty_doc[] =
"setProperty(property)\n"
"\t- property: string\n"
"\tSets the name of the property or material for the ray detection of the distance constraint.\n"
"\tIf empty, the ray will detect any collisioning object.\n";
PyObject* KX_ConstraintActuator::PySetProperty(PyObject* self,
PyObject* args,
PyObject* kwds) {
char *property;
if (!PyArg_ParseTuple(args, "s", &property)) {
return NULL;
}
if (property == NULL) {
m_property[0] = 0;
} else {
strncpy(m_property, property, sizeof(m_property));
m_property[sizeof(m_property)-1] = 0;
}
Py_Return;
}
/* 3. getProperty */
char KX_ConstraintActuator::GetProperty_doc[] =
"getProperty()\n"
"\tReturns the property parameter.\n";
PyObject* KX_ConstraintActuator::PyGetProperty(PyObject* self,
PyObject* args,
PyObject* kwds){
return PyString_FromString(m_property);
}
/* 4. setDistance */
char KX_ConstraintActuator::SetDistance_doc[] =
"setDistance(distance)\n"
"\t- distance: float\n"
"\tSets the target distance in distance constraint\n";
/* 4. setMin */
char KX_ConstraintActuator::SetMin_doc[] =
"setMin(lower_bound)\n"
"\t- lower_bound: float\n"
"\tSets the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMin(PyObject* self,
PyObject* args,
PyObject* kwds) {
float minArg;
if(!PyArg_ParseTuple(args, "f", &minArg)) {
return NULL;
}
switch (m_locrot) {
default:
m_minimumBound = minArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_minimumBound = MT_radians(minArg);
break;
}
Py_Return;
}
/* 5. getDistance */
char KX_ConstraintActuator::GetDistance_doc[] =
"getDistance()\n"
"\tReturns the distance parameter \n";
/* 5. getMin */
char KX_ConstraintActuator::GetMin_doc[] =
"getMin()\n"
"\tReturns the lower value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMin(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyFloat_FromDouble(m_minimumBound);
}
/* 6. setRayLength */
char KX_ConstraintActuator::SetRayLength_doc[] =
"setRayLength(length)\n"
"\t- length: float\n"
"\tSets the maximum ray length of the distance constraint\n";
/* 6. setMax */
char KX_ConstraintActuator::SetMax_doc[] =
"setMax(upper_bound)\n"
"\t- upper_bound: float\n"
"\tSets the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PySetMax(PyObject* self,
PyObject* args,
PyObject* kwds){
float maxArg;
if(!PyArg_ParseTuple(args, "f", &maxArg)) {
return NULL;
}
switch (m_locrot) {
default:
m_maximumBound = maxArg;
break;
case KX_ACT_CONSTRAINT_ROTX:
case KX_ACT_CONSTRAINT_ROTY:
case KX_ACT_CONSTRAINT_ROTZ:
m_maximumBound = MT_radians(maxArg);
break;
}
Py_Return;
}
/* 7. getRayLength */
char KX_ConstraintActuator::GetRayLength_doc[] =
"getRayLength()\n"
"\tReturns the length of the ray\n";
/* 7. getMax */
char KX_ConstraintActuator::GetMax_doc[] =
"getMax()\n"
"\tReturns the upper value of the interval to which the value\n"
"\tis clipped.\n";
PyObject* KX_ConstraintActuator::PyGetMax(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyFloat_FromDouble(m_maximumBound);
}
/* This setter/getter probably for the constraint type */
/* 8. setLimit */
char KX_ConstraintActuator::SetLimit_doc[] =
"setLimit(type)\n"
"\t- type: integer\n"
"\t 1 : LocX\n"
"\t 2 : LocY\n"
"\t 3 : LocZ\n"
"\t 7 : Distance along +X axis\n"
"\t 8 : Distance along +Y axis\n"
"\t 9 : Distance along +Z axis\n"
"\t 10 : Distance along -X axis\n"
"\t 11 : Distance along -Y axis\n"
"\t 12 : Distance along -Z axis\n"
"\t 13 : Align X axis\n"
"\t 14 : Align Y axis\n"
"\t 15 : Align Z axis\n"
"\tSets the type of constraint.\n";
PyObject* KX_ConstraintActuator::PySetLimit(PyObject* self,
PyObject* args,
PyObject* kwds) {
int locrotArg;
if(!PyArg_ParseTuple(args, "i", &locrotArg)) {
return NULL;
}
if (IsValidMode((KX_CONSTRAINTTYPE)locrotArg)) m_locrot = locrotArg;
Py_Return;
}
/* 9. getLimit */
char KX_ConstraintActuator::GetLimit_doc[] =
"getLimit()\n"
"\tReturns the type of constraint.\n";
PyObject* KX_ConstraintActuator::PyGetLimit(PyObject* self,
PyObject* args,
PyObject* kwds) {
return PyInt_FromLong(m_locrot);
}
/* eof */