blender/source/gameengine/Ketsji/KX_GameObject.h
Benoit Bolsee 70d239ef7d BGE logic update: new servo control motion actuator, new distance constraint actuator, new orientation constraint actuator, new actuator sensor.
General
=======
- Removal of Damp option in motion actuator (replaced by
  Servo control motion).
- No PyDoc at present, will be added soon.

Generalization of the Lvl option
================================
A sensor with the Lvl option selected will always produce an 
event at the start of the game or when entering a state or at 
object creation. The event will be positive or negative 
depending of the sensor condition. A negative pulse makes
sense when used with a NAND controller: it will be converted
into an actuator activation.

Servo control motion
====================
A new variant of the motion actuator allows to control speed 
with force. The control if of type "PID" (Propotional, Integral, 
Derivate): the force is automatically adapted to achieve the 
target speed. All the parameters of the servo controller are
configurable. The result is a great variety of motion style: 
anysotropic friction, flying, sliding, pseudo Dloc...
This actuator should be used in preference to Dloc and LinV
as it produces more fluid movements and avoids the collision 
problem with Dloc.
LinV : target speed as (X,Y,Z) vector in local or world 
       coordinates (mostly useful in local coordinates).
Limit: the force can be limited along each axis (in the same
       coordinates of LinV). No limitation means that the force
       will grow as large as necessary to achieve the target 
       speed along that axis. Set a max value to limit the 
       accelaration along an axis (slow start) and set a min
       value (negative) to limit the brake force.
P:     Proportional coefficient of servo controller, don't set
       directly unless you know what you're doing.
I:     Integral coefficient of servo controller. Use low value
       (<0.1) for slow reaction (sliding), high values (>0.5)
       for hard control. The P coefficient will be automatically
       set to 60 times the I coefficient (a reasonable value).
D:     Derivate coefficient. Leave to 0 unless you know what
       you're doing. High values create instability. 

Notes: - This actuator works perfectly in zero friction 
         environment: the PID controller will simulate friction
         by applying force as needed.
       - This actuator is compatible with simple Drot motion
         actuator but not with LinV and Dloc motion.
       - (0,0,0) is a valid target speed.
       - All parameters are accessible through Python.

Distance constraint actuator
============================
A new variant of the constraint actuator allows to set the
distance and orientation relative to a surface. The controller
uses a ray to detect the surface (or any object) and adapt the
distance and orientation parallel to the surface.
Damp:  Time constant (in nb of frames) of distance and 
       orientation control.
Dist:  Select to enable distance control and set target 
       distance. The object will be position at the given
       distance of surface along the ray direction.
Direction: chose a local axis as the ray direction.
Range: length of ray. Objecgt within this distance will be 
       detected.
N    : Select to enable orientation control. The actuator will
       change the orientation and the location of the object 
       so that it is parallel to the surface at the vertical
       of the point of contact of the ray.  
M/P  : Select to enable material detection. Default is property
       detection.
Property/Material: name of property/material that the target of
       ray must have to be detected. If not set, property/
       material filter is disabled and any collisioning object
       within range will be detected.
PER  : Select to enable persistent operation. Normally the 
       actuator disables itself automatically if the ray does
       not reach a valid target. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  
rotDamp: Time constant (in nb of frame) of orientation control.
       0 : use Damp parameter.
       >0: use a different time constant for orientation.

Notes: - If neither N nor Dist options are set, the actuator
         does not change the position and orientation of the
         object; it works as a ray sensor.
       - The ray has no "X-ray" capability: if the first object
         hit does not have the required property/material, it
         returns no hit and the actuator disables itself unless
         PER option is enabled.
       - This actuator changes the position and orientation but
         not the speed of the object. This has an important 
         implication in a gravity environment: the gravity will
         cause the speed to increase although the object seems
         to stay still (it is repositioned at each frame).
         The gravity must be compensated in one way or another.
         the new servo control motion actuator is the simplest 
         way: set the target speed along the ray axis to 0
         and the servo control will automatically compensate 
         the gravity.
       - This actuator changes the orientation of the object 
         and will conflict with Drot motion unless it is 
         placed BEFORE the Drot motion actuator (the order of 
         actuator is important)
       - All parameters are accessible through Python.

Orientation constraint 
======================
A new variant of the constraint actuator allows to align an
object axis along a global direction.
Damp : Time constant (in nb of frames) of orientation control.
X,Y,Z: Global coordinates of reference direction. 
time : Maximum activation time of actuator. 
       0 : unlimited.
       >0: number of frames before automatic deactivation.  

Notes: - (X,Y,Z) = (0,0,0) is not a valid direction
       - This actuator changes the orientation of the object
         and will conflict with Drot motion unless it is placed
         BEFORE the Drot motion actuator (the order of 
         actuator is important).
       - This actuator doesn't change the location and speed. 
         It is compatible with gravity.
       - All parameters are accessible through Python.

Actuator sensor 
===============
This sensor detects the activation and deactivation of actuators 
of the same object. The sensor generates a positive pulse when 
the corresponding sensor is activated and a negative pulse when 
it is deactivated (the contrary if the Inv option is selected). 
This is mostly useful to chain actions and to detect the loss of 
contact of the distance motion actuator.

Notes: - Actuators are disabled at the start of the game; if you
         want to detect the On-Off transition of an actuator 
         after it has been activated at least once, unselect the
         Lvl and Inv options and use a NAND controller.
       - Some actuators deactivates themselves immediately after 
         being activated. The sensor detects this situation as 
         an On-Off transition.
       - The actuator name can be set through Python.
2008-07-04 08:14:50 +00:00

759 lines
15 KiB
C++

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
* General KX game object.
*/
#ifndef __KX_GAMEOBJECT
#define __KX_GAMEOBJECT
#ifdef WIN32
// get rid of this stupid "warning 'this' used in initialiser list", generated by VC when including Solid/Sumo
#pragma warning (disable : 4355)
#endif
#include "ListValue.h"
#include "SCA_IObject.h"
#include "SG_Node.h"
#include "MT_Transform.h"
#include "MT_CmMatrix4x4.h"
#include "GEN_Map.h"
#include "GEN_HashedPtr.h"
#include "KX_Scene.h"
#include "KX_KetsjiEngine.h" /* for m_anim_framerate */
#include "KX_IPhysicsController.h" /* for suspend/resume */
#define KX_OB_DYNAMIC 1
//Forward declarations.
struct KX_ClientObjectInfo;
class RAS_MeshObject;
class KX_IPhysicsController;
class PHY_IPhysicsEnvironment;
struct Object;
/**
* KX_GameObject is the main class for dynamic objects.
*/
class KX_GameObject : public SCA_IObject
{
Py_Header;
protected:
bool m_bDyna;
KX_ClientObjectInfo* m_pClient_info;
STR_String m_name;
STR_String m_text;
int m_layer;
std::vector<RAS_MeshObject*> m_meshes;
struct Object* m_pBlenderObject;
bool m_bSuspendDynamics;
bool m_bUseObjectColor;
bool m_bIsNegativeScaling;
MT_Vector4 m_objectColor;
// Is this object set to be visible? Only useful for the
// visibility subsystem right now.
bool m_bVisible;
KX_IPhysicsController* m_pPhysicsController1;
// used for ray casting
PHY_IPhysicsEnvironment* m_pPhysicsEnvironment;
STR_String m_testPropName;
KX_GameObject* m_pHitObject;
SG_Node* m_pSGNode;
MT_CmMatrix4x4 m_OpenGL_4x4Matrix;
public:
bool m_isDeformable;
virtual void /* This function should be virtual - derived classed override it */
Relink(
GEN_Map<GEN_HashedPtr, void*> *map
);
/**
* Compute an OpenGl compatable 4x4 matrix. Has the
* side effect of storing the result internally. The
* memory for the matrix remains the property of this class.
*/
double*
GetOpenGLMatrix(
);
/**
* Return a pointer to a MT_CmMatrix4x4 storing the
* opengl transformation for this object. This is updated
* by a call to GetOpenGLMatrix(). This class owns the
* memory for the returned matrix.
*/
MT_CmMatrix4x4*
GetOpenGLMatrixPtr(
) {
return &m_OpenGL_4x4Matrix;
};
/**
* Get a pointer to the game object that is the parent of
* this object. Or NULL if there is no parent. The returned
* object is part of a reference counting scheme. Calling
* this function ups the reference count on the returned
* object. It is the responsibility of the caller to decrement
* the reference count when you have finished with it.
*/
KX_GameObject*
GetParent(
);
/**
* Sets the parent of this object to a game object
*/
void SetParent(KX_Scene *scene, KX_GameObject *obj);
/**
* Removes the parent of this object to a game object
*/
void RemoveParent(KX_Scene *scene);
/**
* Construct a game object. This class also inherits the
* default constructors - use those with care!
*/
KX_GameObject(
void* sgReplicationInfo,
SG_Callbacks callbacks,
PyTypeObject* T=&Type
);
virtual
~KX_GameObject(
);
CValue*
AddRef() {
/* temporarily to find memleaks */ return CValue::AddRef();
}
/**
* @section Stuff which is here due to poor design.
* Inherited from CValue and needs an implementation.
* Do not expect these functions do to anything sensible.
*/
/**
* Inherited from CValue -- does nothing!
*/
CValue*
Calc(
VALUE_OPERATOR op,
CValue *val
);
/**
* Inherited from CValue -- does nothing!
*/
CValue*
CalcFinal(
VALUE_DATA_TYPE dtype,
VALUE_OPERATOR op,
CValue *val
);
/**
* Inherited from CValue -- does nothing!
*/
const
STR_String &
GetText(
);
/**
* Inherited from CValue -- does nothing!
*/
float
GetNumber(
);
/**
* @section Inherited from CValue. These are the useful
* part of the CValue interface that this class implements.
*/
/**
* Inherited from CValue -- returns the name of this object.
*/
STR_String
GetName(
);
/**
* Inherited from CValue -- set the name of this object.
*/
void
SetName(
STR_String name
);
/**
* Inherited from CValue -- does nothing.
*/
void
ReplicaSetName(
STR_String name
);
/**
* Inherited from CValue -- return a new copy of this
* instance allocated on the heap. Ownership of the new
* object belongs with the caller.
*/
virtual CValue*
GetReplica(
);
/**
* Inherited from CValue -- Makes sure any internal
* data owned by this class is deep copied. Called internally
*/
virtual void
ProcessReplica(
KX_GameObject* replica
);
/**
* Return the linear velocity of the game object.
*/
MT_Vector3
GetLinearVelocity(
bool local=false
);
/**
* Return the mass of the object
*/
MT_Scalar
GetMass();
/**
* Return the angular velocity of the game object.
*/
MT_Vector3
GetAngularVelocity(
bool local=false
);
/**
* Align the object to a given normal.
*/
void
AlignAxisToVect(
const MT_Vector3& vect,
int axis = 2
);
/**
* Quick'n'dirty obcolor ipo stuff
*/
void
SetObjectColor(
const MT_Vector4& rgbavec
);
void
ResolveCombinedVelocities(
const MT_Vector3 & lin_vel,
const MT_Vector3 & ang_vel,
bool lin_vel_local,
bool ang_vel_local
);
/**
* @return a pointer to the physics environment in use during the game, for rayCasting
*/
PHY_IPhysicsEnvironment* GetPhysicsEnvironment()
{
return m_pPhysicsEnvironment;
}
void SetPhysicsEnvironment(PHY_IPhysicsEnvironment* physicsEnvironment)
{
m_pPhysicsEnvironment = physicsEnvironment;
}
/**
* @return a pointer to the physics controller owned by this class.
*/
KX_IPhysicsController* GetPhysicsController() ;
void SetPhysicsController(KX_IPhysicsController* physicscontroller,bool isDynamic)
{
m_bDyna = isDynamic;
m_pPhysicsController1 = physicscontroller;
}
/**
* @section Coordinate system manipulation functions
*/
void NodeSetLocalPosition(const MT_Point3& trans );
void NodeSetLocalOrientation(const MT_Matrix3x3& rot );
void NodeSetLocalScale( const MT_Vector3& scale );
void NodeSetRelativeScale( const MT_Vector3& scale );
// adapt local position so that world position is set to desired position
void NodeSetWorldPosition(const MT_Point3& trans);
void
NodeUpdateGS(
double time,
bool bInitiator
);
const
MT_Matrix3x3&
NodeGetWorldOrientation(
) const;
const
MT_Vector3&
NodeGetWorldScaling(
) const;
const
MT_Point3&
NodeGetWorldPosition(
) const;
/**
* @section scene graph node accessor functions.
*/
SG_Node* GetSGNode( )
{
return m_pSGNode;
}
const SG_Node* GetSGNode( ) const
{
return m_pSGNode;
}
/**
* @section blender object accessor functions.
*/
struct Object* GetBlenderObject( )
{
return m_pBlenderObject;
}
void SetBlenderObject( struct Object* obj)
{
m_pBlenderObject = obj;
}
/**
* Set the Scene graph node for this game object.
* warning - it is your responsibility to make sure
* all controllers look at this new node. You must
* also take care of the memory associated with the
* old node. This class takes ownership of the new
* node.
*/
void SetSGNode(SG_Node* node )
{
m_pSGNode = node;
}
//Is it a dynamic/physics object ?
bool IsDynamic() const
{
return m_bDyna;
}
/**
* Check if this object has a vertex parent relationship
*/
bool IsVertexParent( )
{
return (m_pSGNode && m_pSGNode->GetSGParent() && m_pSGNode->GetSGParent()->IsVertexParent());
}
bool RayHit(KX_ClientObjectInfo* client, MT_Point3& hit_point, MT_Vector3& hit_normal, void * const data);
/**
* @section Physics accessors for this node.
*
* All these calls get passed directly to the physics controller
* owned by this object.
* This is real interface bloat. Why not just use the physics controller
* directly? I think this is because the python interface is in the wrong
* place.
*/
void
ApplyForce(
const MT_Vector3& force, bool local
);
void
ApplyTorque(
const MT_Vector3& torque,
bool local
);
void
ApplyRotation(
const MT_Vector3& drot,
bool local
);
void
ApplyMovement(
const MT_Vector3& dloc,
bool local
);
void
addLinearVelocity(
const MT_Vector3& lin_vel,
bool local
);
void
setLinearVelocity(
const MT_Vector3& lin_vel,
bool local
);
void
setAngularVelocity(
const MT_Vector3& ang_vel,
bool local
);
/**
* Update the physics object transform based upon the current SG_Node
* position.
*/
void
UpdateTransform(
);
static void UpdateTransformFunc(SG_IObject* node, void* gameobj, void* scene);
/**
* Only update the transform if it's a non-dynamic object
*/
void
UpdateNonDynas(
);
/**
* Odd function to update an ipo. ???
*/
void
UpdateIPO(
float curframetime,
bool recurse,
bool ipo_as_force,
bool force_ipo_local
);
/**
* Updates Material Ipo data
*/
void
UpdateMaterialData(
MT_Vector4 rgba,
MT_Vector3 specrgb,
MT_Scalar hard,
MT_Scalar spec,
MT_Scalar ref,
MT_Scalar emit,
MT_Scalar alpha
);
/**
* @section Mesh accessor functions.
*/
/**
* Run through the meshes associated with this
* object and bucketize them. See RAS_Mesh for
* more details on this function. Interesting to
* note that polygon bucketizing seems to happen on a per
* object basis. Which may explain why there is such
* a big performance gain when all static objects
* are joined into 1.
*/
void
Bucketize(
);
/**
* Clear the meshes associated with this class
* and remove from the bucketing system.
* Don't think this actually deletes any of the meshes.
*/
void
RemoveMeshes(
);
/**
* Add a mesh to the set of meshes associated with this
* node. Meshes added in this way are not deleted by this class.
* Make sure you call RemoveMeshes() before deleting the
* mesh though,
*/
void
AddMesh(
RAS_MeshObject* mesh
){
m_meshes.push_back(mesh);
}
/**
* Pick out a mesh associated with the integer 'num'.
*/
RAS_MeshObject*
GetMesh(
int num
) const {
return m_meshes[num];
}
/**
* Return the number of meshes currently associated with this
* game object.
*/
int
GetMeshCount(
) const {
return m_meshes.size();
}
/**
* Set the debug color of the meshes associated with this
* class. Does this still work?
*/
void
SetDebugColor(
unsigned int bgra
);
/**
* Reset the debug color of meshes associated with this class.
*/
void
ResetDebugColor(
);
/**
* Set the visibility of the meshes associated with this
* object.
*/
void
MarkVisible(
bool visible
);
/**
* Set the visibility according to the visibility flag.
*/
void
MarkVisible(
void
);
/**
* Was this object marked visible? (only for the ewxplicit
* visibility system).
*/
bool
GetVisible(
void
);
/**
* Set visibility flag of this object
*/
void
SetVisible(
bool b
);
/**
* Change the layer of the object (when it is added in another layer
* than the original layer)
*/
void
SetLayer(
int l
);
/**
* Get the object layer
*/
int
GetLayer(
void
);
/**
* Get the negative scaling state
*/
bool
IsNegativeScaling(
void
) { return m_bIsNegativeScaling; }
/**
* @section Logic bubbling methods.
*/
/**
* Stop making progress
*/
void Suspend(void);
/**
* Resume making progress
*/
void Resume(void);
void SuspendDynamics(void) {
if (m_bSuspendDynamics)
{
return;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->SuspendDynamics();
}
m_bSuspendDynamics = true;
}
void RestoreDynamics(void) {
if (!m_bSuspendDynamics)
{
return;
}
if (m_pPhysicsController1)
{
m_pPhysicsController1->RestoreDynamics();
}
m_bSuspendDynamics = false;
}
KX_ClientObjectInfo* getClientInfo() { return m_pClient_info; }
/**
* @section Python interface functions.
*/
virtual
PyObject*
_getattr(
const STR_String& attr
);
virtual
int
_setattr(
const STR_String& attr,
PyObject *value
); // _setattr method
KX_PYMETHOD_NOARGS(KX_GameObject,GetPosition);
KX_PYMETHOD_O(KX_GameObject,SetPosition);
KX_PYMETHOD(KX_GameObject,GetLinearVelocity);
KX_PYMETHOD(KX_GameObject,SetLinearVelocity);
KX_PYMETHOD(KX_GameObject,GetVelocity);
KX_PYMETHOD_NOARGS(KX_GameObject,GetMass);
KX_PYMETHOD_NOARGS(KX_GameObject,GetReactionForce);
KX_PYMETHOD_NOARGS(KX_GameObject,GetOrientation);
KX_PYMETHOD_O(KX_GameObject,SetOrientation);
KX_PYMETHOD_NOARGS(KX_GameObject,GetVisible);
KX_PYMETHOD_O(KX_GameObject,SetVisible);
KX_PYMETHOD_NOARGS(KX_GameObject,GetState);
KX_PYMETHOD_O(KX_GameObject,SetState);
KX_PYMETHOD(KX_GameObject,AlignAxisToVect);
KX_PYMETHOD_O(KX_GameObject,GetAxisVect);
KX_PYMETHOD_NOARGS(KX_GameObject,SuspendDynamics);
KX_PYMETHOD_NOARGS(KX_GameObject,RestoreDynamics);
KX_PYMETHOD_NOARGS(KX_GameObject,EnableRigidBody);
KX_PYMETHOD_NOARGS(KX_GameObject,DisableRigidBody);
KX_PYMETHOD(KX_GameObject,ApplyImpulse);
KX_PYMETHOD_O(KX_GameObject,SetCollisionMargin);
KX_PYMETHOD_NOARGS(KX_GameObject,GetParent);
KX_PYMETHOD_O(KX_GameObject,SetParent);
KX_PYMETHOD_NOARGS(KX_GameObject,RemoveParent);
KX_PYMETHOD(KX_GameObject,GetMesh);
KX_PYMETHOD_NOARGS(KX_GameObject,GetPhysicsId);
KX_PYMETHOD_NOARGS(KX_GameObject,GetPropertyNames);
KX_PYMETHOD_NOARGS(KX_GameObject,EndObject);
KX_PYMETHOD_DOC(KX_GameObject,rayCastTo);
KX_PYMETHOD_DOC(KX_GameObject,rayCast);
KX_PYMETHOD_DOC(KX_GameObject,getDistanceTo);
private :
/**
* Random internal function to convert python function arguments
* to 2 vectors.
* @return true if conversion was possible.
*/
bool
ConvertPythonVectorArgs(
PyObject* args,
MT_Vector3& pos,
MT_Vector3& pos2
);
};
#endif //__KX_GAMEOBJECT